Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2n+1 và 7n+2
Gọi d là ƯCLN của 2n+1 và 7n+2
Vì 2n+1 chia hết cho d,7n+2 chia hết cho d
TC: 7.(2n+1) chia hết cho d , 2.(7n+2) chia hết cho d
14n+7 chia hết cho d , 14n+14 chia hết cho d
Nên (14n+14)-(14n+7) chia hết cho d
14n+14-14n+7 chia hết cho d
7 chia hết cho d
d=7
Kết luận
Các câu khác tương tự nhé
Bai 2:a)
Goi d thuôc UC(n+1;3n+4)
Suy ra:3n+4chia hêt cho d
n+1chia hêt cho d suy ra 3.(n+1)chia hêt cho d =3n+3 chia hêt cho d
Suy ra :3n +4 -3n -3
chia hêt cho d suy ra 1chia hêt cho d suy ra d = 1
VÂY n+1 ; 3n+1 la 2 sô nguyên tô cung nhau
1/2n+5va3n+7
goi UCLL(2n+5va3n+7)la d ta co
- 2n+5 chia het d
- 3n+7 chia het d
- (2n+5)/(3n+7)chia het d
- 3.(2n+5)/ 2.(3n+7)chia het d
- (6n+15)/(6n+14)chia het d
- 1chia het d
- d=1.vay UCLN(2N+5)/(3N+7)=1
- NGUYEN TO CUNG NHAU
3/ Gọi d là ước chung của n + 3 và 2n + 5
Suy ra: 2(n + 3) - (2n + 5) chia hết cho d
2n + 6 - 2n - 5 = 1 chia hết cho d nên d = 1
Vậy UC(n + 3, 2n + 5) = 1
a. Gọi ƯC(3n+5;n+2) là d
Ta có •3n+5 chia hết cho d
•n+2 chia hết cho d
=> 3(n+2) chia hết cho d
=> 3n+6chia hết cho d
=> (3n+6)-(3n+5) chia hết cho d
=>3n+6-3n-5 chia hết cho d
=> 1 chia hết cho d => d=1
Vậy ƯC(3n+5;n+2) =1
b. Gọi ƯC(n+2;2n+3) là d
Ta có • n+2 chia hết cho d
=> 2n+4 chia hết cho d
•2n+3 chia hết cho d
=> (2n+4)-(2n+3) chia hết cho d
=> 1 chia hết cho d=> d=1
=> ƯC(n+2;2n+3) =1
Vậy n+2 và 2n+3 là 2 số nguyên tố cùng nhau
a) Gọi ƯC cua 2n+1 ; 3n+1 là d
\(\begin{cases}2n+1⋮d\\3n+1⋮d\end{cases}\)
\(\Rightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\\ \Rightarrow6n+3-6n-2⋮d\\ \Rightarrow1⋮d\\ d=1 \)
b) Gọi ƯC cua 5n+6 và 8n+7 là d
\(\Rightarrow8\left(5n+6\right)-5\left(8n+7\right)⋮d\\\Rightarrow 40n+48-40n-35⋮d\\\Rightarrow5⋮d\\ d=5 \)
c)7n+10 và 5n+7
Gọi d=(7n+10,5n+7) với n \(\in\) N và d \(\in\) N*
\(\Rightarrow\)7n+10\(⋮\)d\(\Rightarrow\)5(7n+10)\(⋮\)d\(\Rightarrow\)35n+50\(⋮\)d (1)
\(\Rightarrow\)5n+7\(⋮\)d \(\Rightarrow\)7(5n+7) \(⋮\)d\(\Rightarrow\)35n+49\(⋮\)d (2)
Từ (1) và (2) suy ra: (35n+50)-(35n+49)\(⋮\)d
35n+50-35n-49 \(⋮\)d
(35n-35n)+(50-49)\(⋮\)d
0 + 1 \(⋮\)d
1 \(⋮\)d
Vì:1\(⋮\)d nên d\(\in\)Ư(1)
Mà:Ư(1)={1} nên d=1
Vậy 2n+1 và 3n+1 là hai số nguyên tố cùng nhau
a ngan gon nay
ta co 2n+5 : k va 3n + 7 (n thuoc N )
suy ra: 3(2n+5):k va 2(3n+7):k
suy ra 6n+15 :k va 6n+14 :k
suy ra : (6n+15)-2(6n+14):k suy ra1 chia het cho K
cai dau : la chia het nhe may ban 1 !
(minh lam ho cau a nhe cac ban tu lam not nhe) !
Tạm Biet
minh hoc truong Chu Van An nhe ! bye