Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử 1 \(<\) x \(\le\)y. Đặt x+1=yk ( k là một là một số tự nhiên khác 0)
Ta có : x+1 = yk \(\le\) y+1 \(<\) y+y = 2y
=> yk \(<\) 2y
=> k\(<\) 2
Mà k là một là một số tự nhiên khác 0
Nên k=1
Thay k = x+1 vào y+1 ta được
x+1+1 = x+2 chia hết cho x
Mà x chia hết cho x nên 2 chia hết cho x
=> x\(\in\left\{1;2\right\}\)
Với x=1 thì y=x+1=1+1=2
Với x=2 thì y=2+1=3
Vậy các cặp số (x;y) thỏa mãn : (1;2) ; (2;3)
do 8(y-2016)2lớn hơn hoặc bằng 0 nên 36-x2lớn hơn hoặc bằng 0 hay 36 lớn hơn hoặc bằng x2 nên 6 lớn hơn hoặc bằng x mà x là số tự nhiên
Vì x2 > hoặc = 0
=>36-x2 < hoặc = 36
=>8(y-2016)2 <=36 ( viết thế cho gọn...hihi)
=> (y-2016)2 <= 36/8=9/2
Mà y thuộc N=> (y-2016)2 = {0;1;4}
----Nếu (y-2016)2 =0 => y-2016=0 => y=2016 thay vào đề bài:
36-x2=0 =>x2=36 =>x=6 (chọn)
----Nếu (y-2016)2 = 1 => y-2016={1;-1} =>y={2015;2017} thay vào đề bài:
36-x2=8 =>x2=28 (loại)
----Nếu (y-2016)2 = 4 => y-2016={2;-2} =>y={2014;2018} thay vào đề bài:
36-x2=32 => x2=4 =>x={-2;2} (chọn)
Kết luận: (x,y)=... (bạn tự viết nhé!)
Lời giải:
Nếu $y=0$ thì $3^x=2^y+1=2$ (vô lý)
Nếu $y=1$ thì $3^x=2^y+1=3\Rightarrow x=1$
Nếu $y\geq 2$ thì $3^x=2^y+1\equiv 1\pmod 4$
Mà $3^x\equiv (-1)^x\pmod 4$
$\Rightarrow (-1)^x\equiv 1\pmod 4$
$\Rightarrow x$ chẵn. Đặt $x=2k$ thì:
$2^y=3^x-1=3^{2k}-1=(3^k-1)(3^k+1)$
$\Rightarrow$ tồn tại $n>m >0$ tự nhiên sao cho $3^k-1=2^m; 3^k+1=2^n$ với $m+n=y$
$\Rightarrow 2^n-2^m=2$.
$\Rightarrow 2^{n-1}-2^{m-1}=1$
$\Rightarrow 2^{m-1}$ lẻ
$\Rightarrow m=1\Rightarrow n=2$
$\Rightarrow y=m+n=3$
$3^x=1+2^y=1+2^3=9\Rightarrow x=2$
Vậy $(x,y)=(2,3), (1,1)$
dạ em bây giờ mới học lớp 5 thôi