Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
Nếu \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)
Nếu \(y>0\Rightarrow3^y⋮3\)
Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý
Vậy.....
b
Không mất tính tổng quát giả sử \(x\ge y\)
Ta có:
\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)
\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)
Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )
Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)
Vậy x=4;y=2 và các hoán vị
\(\frac{5}{x}=\frac{1}{8}-\frac{y}{4}=\frac{1-2y}{8}\)
\(\Rightarrow x=5:\frac{1-2y}{8}=\frac{40}{1-2y}\)
Do x, y là số nguyên => 40 chia hết cho 1 - 2y
=> 1 - 2y thuộc Ư(40)
Mà 1 - 2y là lẻ => 1 - 2y thuộc {-1; 1; -5; 5}
=> y thuộc {1; 0; 3; -2}
=> x thuộc {-40; 40; -8; 8}
\(\Rightarrow3+\frac{y+z-2x}{x}=3+\frac{x+z-2y}{y}=3+\frac{x+y-2z}{z}\)
\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
\(TH1:x+y+z=0\)
\(\Rightarrow x=-\left(y+z\right),y=-\left(x+z\right),z=-\left(x+y\right)\)
\(A=\left(1+\frac{-y-z}{y}\right).\left(1+\frac{-x-z}{z}\right).\left(1+\frac{-x-y}{x}\right)\)
\(A=-\left(\frac{z}{y}\cdot\frac{x}{z}\cdot\frac{y}{x}\right)=-1\)
\(TH2:x+y+z\ne0\)
\(\Rightarrow x=y=z\Rightarrow A=2^3=8\)
sai đề ròi: tớ làm 2 trường hợp luôn vì trường hợp x+y+z khác 0 thì A mới t/m thuộc N
mà đề là x+y+z khác 0 -.-
a, => (x-10/30 - 3) + (x-14/43 - 2) + (x-5/95 - 1) + x-100/8 = 0 ( vì x-148/8 = x-100/8 + 48/8 = x-100/8 + 6 )
=> x-100/30 + x-100/43 + x-100/95 + x-100/8 = 0
=> (x-100).(1/30 + 1/43 + 1/95 + 1/8) = 0
=> x-100 = 0 ( vì 1/30+1/43+1/95+1/8 > 0 )
=> x = 100
Vậy x = 100
Tk mk nha
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\Rightarrow\frac{5}{x}=\frac{1}{8}-\frac{y}{4}=\frac{1}{8}-\frac{2y}{8}=\frac{1-2y}{8}\)
=>x.(1-2y)=5.8=40
=>x và 1-2y là ước của 40
2y là số chẵn =>1-2y là số lẻ =>1-2y là ước lẻ của 40
Ta có bảng sau:
x | 40 | -40 | 8 | -8 |
1-2y | 1 | -1 | 5 | -5 |
suy ra :
x | 40 | -40 | 8 | -8 |
y | 0 | 1 | -2 | 3 |
Vậy.................................................
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\Rightarrow\frac{5}{x}=\frac{1}{8}-\frac{y}{4}=\frac{1-2y}{8}\)
=>40=(1-2y)x
từ đó lập bảng
\(\frac{x}{8}-\frac{1}{y}=\frac{3}{8}\)
\(\Rightarrow\frac{1}{y}=\frac{x-3}{8}\)
\(\Rightarrow y\left(x-3\right)=8\)
Ta có bảng sau:
y | 1 | 8 | -1 | -8 | 2 | 4 | -2 | -4 |
x - 3 | 8 | 1 | -8 | -1 | 4 | 2 | -4 | -2 |
x | 11 | 4 | -5 | 2 | 7 | 5 | -1 | 1 |
Vậy các cặp số (x,y) là: (1,11) ; (8,4) ; (-1,-5) ; (-8,2) ; (2,7) ; (4,5) ; (-2,-1) ; (-4,1)
Theo bài ra: 5x+y4=18
⇒5/x=1/8−2y/8
⇒5x=1−2y/8
⇒5:x=(1−2y):8
⇒x(1−2y)=40 ( Quy tắc chuyển vế )
Có: 1−2y là số lẻ
⇒ 1 - 2y thuộc ước lẻ của 40.
⇒1−2y∈{±1;±5}
Ta có bảng sau:
Vậy x∈{40;−40;8;−8};y∈{0;1;−2;3}