Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^{x+1}.3^y=12x\)
\(\Rightarrow\) \(2^{x+1}.3^y=\left(3.4\right)^x\)
\(\Rightarrow\) \(2^{x+1}.3^y=3^x.2^{2x}\)
\(\Rightarrow\) \(3^{y-x}=2^{x-1}\)
\(\Rightarrow\) \(y-x=x-1=0\)
\(\Rightarrow\) \(x=y=1\)
a/\(2\left|3x-1\right|+1=5\)
\(\Rightarrow2\left|3x-1\right|=4\)
\(\Rightarrow\left|3x-1\right|=2\)
\(\Rightarrow\left[{}\begin{matrix}3x-1=2\\3x-1=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3x=3\\3x=-1\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow x=1\)
Vậy x = 1
b/\(3^y+3^{y+2}=810\)
\(\Rightarrow3^y+3^y\cdot3^2=810\)
\(\Rightarrow3^y\left(1+3^2\right)=810\)
\(\Rightarrow3^y\cdot10=810\)
\(\Rightarrow3^y=81\)
\(\Rightarrow y=4\)
c/Thay x = -3, y = 4 vào M, ta có:
\(M=3\cdot\left(-3\right)^2-5\cdot4+1\)
\(=3\cdot9-20+1\)
\(=27-20+1\)
\(=8\)
a)Ta có:
\(2\left|3x-1\right|+1=5\)
\(\Rightarrow2\left|3x-1\right|=4\)
\(\Rightarrow\left|3x-1\right|=2\)
\(\Rightarrow\left[{}\begin{matrix}3x-1=2\\3x-1=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3x=3\\3x=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
b) Ta có:
\(3^y+3^{y+2}=810\)
\(\Rightarrow3^y\left(1+3^2\right)=810\)
\(\Rightarrow3^y.10=810\)
\(\Rightarrow3^y=81\)
\(\Rightarrow y=4\)
c) Thay \(x=-3;y=4\) ta được:
\(M=3\left(-3\right)^2-5.4+1=3.9-20+1=27-20+1=8\)
Trả lời:
Ta có: 5x - 3y = 2xy - 11
<=> 2 ( 5x - 3y ) = 2 ( 2xy - 11 )
<=> 10x - 6y = 4xy - 22
<=> 10x - 6y = 4xy - 15 - 7
<=> 10x - 6y - 4xy + 15 = - 7
<=> - ( 4xy - 10x + 6y - 15 ) = - 7
<=> 4xy - 10x + 6y - 15 = 7
<=> ( 4xy - 10x ) + ( 6y - 15 ) = 7
<=> 2x ( 2y - 5 ) + 3 ( 2y - 5 ) = 7
<=> ( 2x + 3 ) ( 2y - 5 ) = 7
=> 2x + 3 thuộc ước của 7; 2y - 5 thuộc ước của 7
Mà Ư(7) = { 1; - 1; 7; - 7 }
nên ta có bảng sau:
2x+3 | 1 | -1 | 7 | -7 |
2y-5 | 7 | -7 | 1 | -1 |
x | -1 | -2 | 2 | -5 |
y | 6 | -1 | 3 | 2 |
Mà x, y là số tự nhiên nên cặp ( x ; y ) thỏa mãn đề bài là: ( 2 ; 3 )
Vậy x = 2; y = 3
\(2^{x+1}.3^y=12^x\Rightarrow2^{x+1}.3^y=4^x.3^x\Rightarrow2^{x++1}.3^y=2^{2x}.3^x\)'
\(\Rightarrow\hept{\begin{cases}x+1=2x\\x=y\end{cases}\Rightarrow\hept{\begin{cases}x=1\\x=y\end{cases}\Rightarrow}x=y=1}\)