Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a = b.4 + 35
=> b = (a-35)/4 ≤ (200 - 35)/4 = 165/4 < 168/4 = 42
Mặt khác: số dư là 35 => số chia b > 35
Vậy 35 < b < 42 => b có thể là 36; 37; 38; 39; 40; 41
Khi đó a sẽ lần lượt là (a = b.4 + 35): 179; 183; 187; 191; 195; 199
a) (x+5)+(x+10)+.........+(x+60)=450
12x +(5+10+.........+60)=450
12x+390=450
12x=60
x=5
b) Gọi n là thương của phép chia a cho 54; =>54n+38=252+r =>r-2 chia hết cho 54
r là dư của phép chia a cho 18 (n,r thuộc N;r<14) =>54n =214+r =>r-2=0
=>a=54n + 38 =>n=(214+r):54 =>r =2
a=18x14+r =>214+r chia hết cho 54 =>a=18x14+2=254
=>54n+38=18x14+r =>216+r-2 chia hết cho 54
bài 6 ta có số chia 10 thì thương là 7
số chia là 7 thì thương là 10
số chia là 2 thì thương là 35
số chia là 35 thì thương là 2
số chia là 5 thì thương là 14
số chia là 14 thì thương là 5
Biết a/b là phân số nhỏ nhất sao cho khi chia a/b cho 18/35 và 8/15 đều được thương là các số tự nhiên. Tổng a + b là .........
a/b :18/35 = a/b. 35/18 = 35a/18b và a/b :8/15 = a/b. 15/8 = 15a/8b
Do 35a/18b và 15a/8b thuộc N nên 35a chia hết cho 18b và 15a chia hết cho 8b
lại có UC(35,18)=1 và UC(15,8)=1=> a là bội chung của 18 và 8
và b là ước chung của 35 và 15 . Do a/b nhỏ nhất => a=BCNN(18,8) = 72
và b=UCLN(35,15) = 5 => tổng a+b = 77
x chia cho 42 được thương là q và dư là q2 nên:
\(x=42q+q^2\)
Vì số dư phải bé hơn thương nên \(q^2< 42\)
Mặt khác x > 150 => thương x chia cho 42 phải lớn hơn hoặc bằng thương của 150 chia cho 42 và bằng 3.
Vậy ta có: \(q\ge3\) và \(q^2< 42\)
=> q = 3; 4; 5; 6
Với q = 3: \(x=42q+q^2=42.3+3^2=135< 150\) (không thỏa mãn)
Với q = 4: \(x=42q+q^2=42.4+4^2=184\) (thỏa mãn)
Với q = 5: \(x=42q+q^2=42.5+5^2=235\) (thỏa mãn)
Với q = 6: \(x=42q+q^2=42.6+6^2=288\) (thỏa mãn)
Vậy các số tìm được là: 184; 235; 288