K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có

67:x( du 7)

93:x (du 9)

=>67-7 chia hết cho x

93-9 chia hết cho x

=>60 chia hết cho x

84 chia hết cho x

=>x thuộc ÚC (60,84)

lại có

60=2^2.3.5

84=2^2.3.7

=>UCLN(60,84)=2^2.3=12

=>UC(60,84)=U(12)={1,2,3,4,6,12}

vay xthuoc {1,2,3,4,6,12}

21 tháng 12 2016

Thanks nhìu bạn!

19 tháng 8 2015

5 số tự nhiên đó có dạng: a + a+1+a+2+a+3+a+4 = a x 5  + 10 = 5 x (a+2)

Vậy tổng số số tự nhiên liên tiếp luôn luôn chia hết cho 5

14 tháng 12 2017

67:x dư 7=>67-7 chia hết cho x=>60 chia hết cho x

93:x dư 9=>93-9 chia hết cho x=>84 chia hết cho x

60 chia hết cho x

84 chia hết cho x

=>x thuộc ƯCLN(60;84)

60=2^2.3.5

84=2^2.3.7

ƯCLN(60;84)=2^2.3=12

Vì x thuộc ƯCLN(60;84)=>x=12

14 tháng 12 2017

Cái chỗ chia hết cho 7 bạn sửa lại thành dấu ba chấm nha, kí hiệu chia hết đó

Còn 2^2 là 2 mũ 2 đó

Dấu . là nhân nha

3 tháng 1 2018

2, TA có:

x + y + xy = 40

=> x(y + 1) + y + 1 = 41

=> (x + 1)(y + 1) = 41

=> x + 1 thuộc Ư(41) = {1; 41}

Xét từng trường hợp rồi thay vào tìm y

3 tháng 1 2018

Có lẽ các bạn thấy hơi dài nhưng các bạn có thể làm 1 trong 3 câu cũng được. Nhưng đừng làm sai nhé! Hihihi...

20 tháng 4 2021

\(x-4⋮7\Rightarrow2\left(x-4\right)+7=2x-1⋮7\)

\(x-6⋮11\Rightarrow2\left(x-6\right)+11=2x-1⋮11\)

Để x nhỏ nhất

=> 2x-1 là BSC nhỏ nhất của 7 và 11 => 2x-1=77=> x=39

20 tháng 4 2021

x mod 7 =4 => x-4 mod 7 =0 => x-4 + 42=( x+38) mod 7 =0

x mod 11 =6 => x-6 mod 11 =0=> x-6 +44= (x+38) mod 11 =0

Vậy (x+38) chia hết cho 7 và 11

(x+38) là BSCNN của (7,11)=77

Vậy số cần tìm là x= 77-38= 39

Đáp số x=39

24 tháng 11 2015

x =7q+4 = 11p +6

=> x + 38 =7q+42 = 11p +44

=> x +38 chia hết cho 7;11 

=> x + 38  thuộc BC(7;11) 

x nhỏ nhất  => x +38 = BCNN(7;11)=7.11 =77

=> x = 77 -38 = 39

Vậy x =39

 

14 tháng 12 2022

a: x chia hết cho 4;5;10

nên \(x\in BC\left(4;5;10\right)\)

mà 10<=x<50

nên x=40

b: x=33

25 tháng 4 2019

30 tháng 11 2019

Ta có: chia x cho 7 dư 4 => x - 4 \(⋮\)7 => x - 4 + 7 . 6   \(⋮\)7 => x + 38 \(⋮\)7

           chia x cho 11 dư 6 => x - 6   \(⋮\)11 => x - 6 +  11. 4 \(⋮\)11  => x + 38 \(⋮\)11

=> x +  38 là BC của ( 7; 11) 

Có: BCNN ( 7; 11 ) = 77 

=> x + 38 thuộc B ( 77) = {0; 77; ...}

Vì x nhỏ nhất => x + 38 = 77 => x = 39.