Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: a^n=1
=>a^n=1^n
=>a=1
b: x^50=x
=>x^50-x=0
=>x(x^49-1)=0
=>x=0 hoặc x^49-1=0
=>x=0 hoặc x^49=1
=>x=0 hoặc x=1
Do x là số tự nhiên nên :
- Nếu x = 0 thì 50x = x = 0, chọn.
- Nếu x \(\ge\) 1 thì 50x \(>\)x, loại
Vậy chỉ có x = 0 thỏa mãn đề bài.
a) Ta có: 6 x - 1 = 6 2 nên x -1 = 2, đo đó x = 3.
b) Ta có: 3 2 x + 1 = 3 3 nên 2x +1 = 3, do đó x = 1.
c) Ta có: x 50 = x nên x 50 - x = 0 , do đó x . x 49 - 1 = 0
Vì thế x = 0 hoặc x = 1.
a, Ta có: 3 x = 3 2 nên x = 2
b, Ta có: 5 x = 5 3 nên x = 3
c, Ta có: 3 x + 1 = 3 2 nên x +1 = 2, do đó x = 1
d, Ta có: 6 x - 1 = 6 2 nên x - 1 = 2, đo đó x = 3
e) Ta có: 3 2 x + 1 = 3 3 nên 2x +1 = 3, do đó x = 1
f) Ta có: x 50 = x nên x 50 - x = 0 , do đó x x 49 - 1 = 0 = 0
Vì thế x = 0 hoặc x = 1
a, Ta có 8 : x = 2 ó x = 8 : 2 ó x = 4. Vậy tập hợp A cần tìm là A ={4} .
Số phần tử của tập hợp A là 1 phần tử
b, Ta có x + 3 < 5 ó x < 2, mà x ∈ ¥ nên x = 0 hoặc x = 1
Tập hợp B các số tự nhiên cần tìm là B ={0; 1}.
Số phần tử của tập hợp B là 2 phần tử
c, Ta có x – 2 = x + 2 ó 0.x = 4 ó x = ∅ . Tập hợp C = ∅
Số phần tử của tập hợp C là không có phần tử
d, Ta có x : 2 = x : 4 ó x = 0. Tập hợp D = {0}
Số phần tử của tập hợp D là 1 phần tử.
e, Ta có: x + 0 = x ó x = x (luôn đúng với mọi x ∈ ¥ )
Tập hợp E = {0;1;2;3;….}
Số phần tử của tập hợp E là vô số phần tử.
a: A={4}
A có 1 phần tử
b: B={0;1}
B có 2 phần tử
c: \(C=\varnothing\)
C không có phần tử nào
d: D={0}
D có 1 phần tử
e: E={x|\(x\in N\)}
E có vô số phần tử
`@` `\text {Ans}`
`\downarrow`
`46,`
`a)`
tập hợp A các số tự nhiên x mà 8 : x = 2
`8 \div x = 2`
`=> x = 8 \div 2 `
`=> x=4`
Vậy, `x=4`
`=> A = {4}`
`b)`
tập hợp B các số tự nhiên x mà x + 3 < 5
`x+3 < 5`
`=> x \in {0; 1}`
`=> B = {0; 1}`
`c)`
tập hợp C các số tự nhiên x mà x - 2 = x + 2
`x - 2 = x + 2`
`=> x - 2 - x - 2 = 0`
`=> (x - x) - (2 + 2) = 0`
`=> 4 = 0 (\text {vô lí})`
Vậy, `x \in`\(\varnothing\)
`=> C = {`\(\varnothing\)`}`
`d)`
tập hơp D các số tự nhiên x mà x + 0 = x
`x + 0 = x`
`=> x = x (\text {luôn đúng})`
Vậy, `x` có vô số giá trị (với x thuộc R)
`=> D = {x \in RR}`
`47,`
`a)`
`x + 3 =4`
`=> x = 4 - 3`
`=> x=1`
Vậy, `x=1`
`=> A = {1}`
`b)`
`8 - x = 5`
`=> x = 8 - 5`
`=> x= 3`
Vậy, `x=3`
`=> B= {3}`
`c)`
`x \div 2 = 0`
`=> x= 0 \times 2`
`=> x=0`
Vậy, `x=0`
`=> C = {0}`
`d)`
`x + 3 = 4` (giống câu a,)
`e) `
`5` `x = 12`
`=> x = 12 \div 5`
`=> x=2,4`
Vậy, `x = 2,4`
`=> E = {2,4}`
`f)`
`4` `x = 12`
`=> x = 12 \div 4`
`=> x=3`
Vậy, `x=3`
`=> F = {3}`
`53,`
`A = {4; 7}`
`B = {4; 5; a}`
`C = { \text {ốc} }`
`D = { \text {cá; cua; ốc} }.`
`@` `\text {Kaizuu lv u.}`
Bài 47:
a) \(x+3=4\)
\(\Rightarrow x=4-3=1\)
b) \(8-x=5\)
\(\Rightarrow x=8-5=3\)
c) \(x:2=0\)
\(\Rightarrow x=0\cdot2=0\)
d) \(x+3=4\)
\(\Rightarrow x=4-3=1\)
e) \(5\times x=12\)
\(\Rightarrow x=\dfrac{12}{5}\)
f) \(4\times x=12\)
\(\Rightarrow x=\dfrac{12}{4}=3\)
Ta có: x50=x.x.x...x
Mà x50=x nên chỉ có hai giá trị của x thoả mãn là x = 0 và x = 1