Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a : 6 dư 2 => \(a-2⋮6\Rightarrow a-2+6⋮6\Rightarrow a+4⋮6\) (1)
a : 7 dư 3 => \(a-3⋮7\Rightarrow a-3+7⋮7\Rightarrow a+4⋮7\) (2)
a : 9 dư 5 => \(a-5⋮9\Rightarrow a-5+9⋮9\Rightarrow a+4⋮9\) (3)
Từ (1), (2), (3) \(\Rightarrow a+4⋮6,7,9\)
\(\Rightarrow a+4\in BC\left(6,7,9\right)\)
mà a nhỏ nhất \(\Rightarrow\) a + 4 cũng nhỏ nhất \(\Rightarrow a+4=BCNN\left(6,7,9\right)\)
Ta có:
\(6=2\times3\)
\(7=7\)
\(9=3^2\)
\(\Rightarrow BCNN\left(6,7,9\right)=2\times3^2\times7=126\)
\(\Rightarrow a+4=126\)
\(\Rightarrow a=126-4\)
\(\Rightarrow a=122\)
Bài 1: Gọi số cần tìm là a. \(\left(a\in N,a< 400\right)\)
Khi đó ta có a - 1 chia hết cho 2, 3, 4, 5 và 6.
Nói cách khác a - 1 chia hết BCNN(2,3,4,5,6) = 60
Vậy a có dạng 60k + 1.
Do a < 400 nên \(60k+1< 400\Rightarrow k\le6\)
Do a chia hết 7 nên ta suy ra a = 301
Bài 2.
Do số cần tìm không chia hết cho 2 và chia 5 thiếu 1 nên phải có tận cùng là 9.
Số đó lại chia hết cho 7 nên ta tìm được các số là :
7.7 = 49 (Thỏa mãn)
7.17 = 119 (Chia 3 dư 2 - Loại)
7.27 = 189 (Chia hết cho 3 - Loại)
7.37 = 259 ( > 200 - Loại)
Vậy số cần tìm là 49.
a chia cho 4, 5, 6 dư 1 nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n => a = 60n+1 với 1 ≤ n < (400-1)/60 = 6,65
mặt khác a chia hết cho 7 => a = 7m
Vậy 7m = 60n + 1
có 1 chia 7 dư 1
=> 60n chia 7 dư 6
mà 60 chia 7 dư 4
=> n chia 7 dư 5
mà n chỉ lấy từ 1 đến 6 => n = 5
a = 60.5 + 1 = 301
- theo bài ra , ta có :
a : 3 dư 2 ; a : 5 dư 4 ; a : 7 dư 6 và a là số tự nhiên nhỏ nhất .
=> a + 1 : 3 ; a + 1 : 5 ; a + 1 : 7 và a là số tự nhiên nhỏ nhất .
=> a + 1 \(\in BCNN\left(3;5;7\right)\)
TA CÓ : 3 = 3
5=5
7=7
=> BCNN (3;5;7) = 3.5.7 =105
MÀ a + 1 \(\in BCNN\left(3;5;7\right)\)
\(\Rightarrow a=104\)
số a chia 3 dư 2 ; chia 5 dư 4 ; chia 7 dư 6 vậy ( a + 1 ) chia hết cho cả 3 ; 5 và 7
ta có bscnn của 3 , 5 , 7 là : 3 x 5 x 7 = 105 nên a \+ 1 = 105
vậy a = 105 - 1 = 104
Gọi số tự nhiên đó là \(n\).
Có \(n\)chia cho \(3\)dư \(2\), chia cho \(5\)dư \(3\), chia cho \(7\)dư \(4\)nên \(2n-1\)chia hết cho \(3,5,7\).
suy ra \(2n-1\in BC\left(3,5,7\right)\).
Có \(3,5,7\)đều là số nguyên tố nên \(BCNN\left(3,5,7\right)=3.5.7=105\)
\(2n-1=105\Leftrightarrow n=53\).
Vậy số cần tìm là \(53\).
1, Gọi số đó là :a
=>a-3⋮4,6,8
=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)
=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)
Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.
N
Gọi số đó là x
Do x chia 2 dư 1, cho 3 dư 2, cho 4 dư 3, cho 5 dư 4, cho 6 dư 5, cho 7 dư 6
=> (x - 1) chia hết 2
(x - 2) chia hết 3
(x - 3) chia hết 4
(x - 4) chia hết 5
(x - 5) chia hết 6
(x - 6) chia hết
=> (x + 1) chia hết cho cả 2, 3, 4, 5, 6, 7
=> (x + 1) là BC(2;3;4;5;6;7)
Mà x nhỏ nhất
=>( x+ 1) là BCNN(2;3;4;5;6;7) = 5.12.7 = 420 => x = 419
Nếu mình đúng thì các bạn k mình nhé
Bài 2:
Gọi số đó là n
Theo bài ra ta có:
\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)
\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)
\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)
\(\Rightarrow n+27⋮11;4;9\)
Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)
\(\Rightarrow n=836-27=809\)
Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\)
Ta có, nếu + 1 vào số đó thì số đó sẽ chia hết cho 2; 3; 7 (hình như là 3)
ta có: 2 = 2 x 1
3 = 1 x 3
7 = 1 x 7
Vậy số đó + 1 là:
3 x 2 x 7 = 42
Số đó là:
42 - 1 = 41
Đ/s:..