K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3

Để phân số (3n+2/7n+1) có thể rút gọn được thì tử và mẫu phải cùng chia hết cho 1 số tự nhiên nào đó (khác 1). Giả sử số đó là X, thì cả tử và mẫu đầu phải chia hết cho X ===> cả (7n+1) và (3n+2) phải chia hết X,
==> 3* (7n+1) phải chia hết X  và 7*(3n+2) phải chia hết X.
Hiệu của của chúng cũng phải chia hết cho X.
7*(3n+2) - 3*(7n+1) phải chia hết X ==> (21n+14) - (21n+3) = 11 phải chia hết X
Như vậy X chỉ có thể là 11 (vì X phải khác 1).
3n+2 phải chia hết cho 11 ==>(3n+2) -11 phải chia hết 11 ==> (3n-9)=3(n-3) phải chia hết 11  ==>(n-3) phải chia hết 11.
Với n từ 100 đến 150 thì (n-3) sẽ trong khoảng 97 đến 147. Những số chia hết 11 trong khoảng đó là: 99,110,121,132,143 tương ứng với n={102,113,124,135,146}.
Với những giá trị n đó:
Tử số sẽ nhận các giá trị   {308,341,374,407,440}
Mẫu số sẽ nhận các giá trị {715,792,869,946,1023}
Cả tử và mẫu số đều chia hết cho 11 (tức là phân số có thể rút gọn được).
Vậy những giá trị cần tìm là: n={102,113,124,135,146}.

a: Để A là số tự nhiên thì 8n+6+187 chia hết cho 4n+3

=>\(4n+3\in\left\{1;-1;11;-11;17;-17;187;-187\right\}\)

mà n>0

nên \(n\in\left\{2;46\right\}\)

c: \(A=\dfrac{8n+6+187}{4n+3}=2+\dfrac{187}{4n+3}\)

Để A rút gọn được thì ƯCLN(8n+193;4n+3)<>1

mà 150<=n<=170

nên \(n\in\left\{156;165;167\right\}\)

25 tháng 7 2016

\(A=\frac{n+4}{n-1}=\frac{n-1+5}{n-1}=1+\frac{5}{n-1}\) vì 1 thuộc Z => để A thuộc Z thì 5 / n-1 thuộc Z

 <=> n-1 thuộc Ư(5 )=> n-1 = 5 => n = 6

                                   n-1 = -5 => n=-4

                                   n-1 = 1 => n= 2

                                   n -1 = -1 => n = 0 

B làm tương tự tách 4n -1 = 4n + 2 -3 = 2. ( 2n+1 ) -3 

12 tháng 10 2017

9 tháng 3 2021

a) \(A=\frac{8n+193}{4n+3}=\frac{2\left(4n+3\right)+187}{4n+3}=2+\frac{187}{4n+3}\)

Để \(A\inℕ\Rightarrow187⋮4n+3\Rightarrow4n+3\in\left\{17;11;187\right\}\)

\(4n+3=11\Leftrightarrow n=2\)

\(4n+3=187\Leftrightarrow n=46\)

\(4n+3=17\Leftrightarrow4n=14\) ( không tồn tại \(n\inℕ\))

Vậy n=2, 46

b) A tối giản khi 187 và 4n+3 có ƯCLN =1

\(\Rightarrow n\ne11k+2\left(k\inℕ\right)\)

\(n\ne17m+12\left(m\inℕ\right)\)

c) \(n=156\Rightarrow A=\frac{17}{19}\)

\(n=165\Rightarrow A=\frac{89}{39}\)

\(n=167\Rightarrow A=\frac{139}{61}\)

21 tháng 3 2021

Làm thế này mới đúng

20 tháng 12 2018

Đặt \(A=\frac{6n+99}{3n+4}=\frac{6n+8+91}{3n+4}=\frac{2\left(3n+4\right)91}{3n+4}+\frac{91}{3n+4}=2+\frac{91}{3n+4}\)

a) Để A là số tự nhiên thì \(91⋮3n+4⋮3n+4\)là ước của 91 hay 3n + 4 \(\in\left\{1;7;13;91\right\}\)

Ta có bảng :

3n + 4171391
n-11329
nhận xétloạithỏa mãnthỏa mãnthỏa mãn

Vậy ......

b) Để A là phân số tối giản thì \(91\text{không chia hết cho 3n + 4 hay 3n + 4 không là ước của 91}\)

=> 3n + 4 ko chia hết cho ước nguyên tố của 91

=> 3n + 4 ko chia hết cho 7 => \(n\ne7k+1\)

=> 3n + 4 ko chia hết cho 13 => \(n\ne13m+3\)

18 tháng 7 2015

Để 8n+193/4n+3 có giá trị là số tự nhiên.

=> 8n+193 chia hết cho 4n+3

=> 8n+6+187 chia hết cho 4n+3

=> 2.(4n+3)+187 chia hết cho 4n+3

=> 187 chia hết cho 4n+3

=> 4n+3=Ư(187)=(1,11,17,187)

=> 4n=(-2,8,14,184)

mà 4n chia hết cho 4.

=> 4n=(8,184)

=> n=(2,46)

Vậy n=2,46

l-i-k-e cho mình đi mình làm tiếp câu b cho.

18 tháng 7 2015

a) Đặt \(A=\frac{8n+193}{4n+3}=\frac{2.\left(4n+3\right)+187}{4n+3}=2+\frac{187}{4n+3}\)

\(\Rightarrow187\div4n+3\Rightarrow4n+3\inƯ\left(187\right)=\left\{17;11;187\right\}\)

+ 4n + 3 = 11  => n = 2

+ 4n +3 = 187 => n = 46

+ 4n + 3 = 17 => 4n = 14 ( loại )

Vậy n = 2 và 46

B)  Gọi ƯCLN ( 8n + 193; 4n + 3) = d

=>   ( 8n + 193; 4n + 3 ) : d => (8n + 193) - 2.(4n+3)

 =>   ( 8n+193 ) - ( 8n + 6 ) : d

=> 187 : d mà A là phân số tối giản => A \(\ne\) 187

=> n \(\ne\)  11k + 2 (k \(\in\) N)

=>  n \(\ne\)  17m + 12 (m  \(\in\) N )

c) n = 156 => A = 77/19

     n = 165 => A =  89/39 

      n = 167 => A = 139/61