\(\frac{9n+24}{3n+4}\)

số tự nhiên

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2018

gọi d là ƯC(3n-2; 4n-3)

\(\Rightarrow\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\)

\(\Rightarrow\) \(\left(12n-8\right)-\left(12n-9\right)\) \(⋮\) \(d\)

\(\Rightarrow\) \(12n-8-12n+9\) \(⋮\) \(d\)

\(\Rightarrow\) \(\left(12n-12n\right)+\left(9-8\right)\) \(⋮\) \(d\)

\(\Rightarrow\) \(0+1\) \(⋮\) \(d\)

\(\Rightarrow\) \(1\) \(⋮\) \(d\)

\(\Rightarrow\) \(d\inƯ\left(1\right)=1\)

\(\Rightarrow\) \(\text{3n-2 và 4n - 3 là 2 số nguyên tố cùng nhau}\)

\(\Rightarrow\) \(\frac{3n-2}{4n-3}\) là phân số tối giản

15 tháng 2 2018

1/ Đặt ƯCLN(3n - 2; 4n - 3) = d

=> \(3n-2⋮d\)và \(4n-3⋮d\)

hay \(4.\left(3n-2\right)⋮d\)và \(3.\left(4n-3\right)⋮d\)

hay \(12n-8⋮d\)và \(12n-9⋮d\)

\(\Leftrightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\)

\(\Leftrightarrow12n-8-12n+9⋮d\)

\(\Leftrightarrow-8+9⋮d\)

Vậy \(1⋮d\)hay \(d\inƯ\left(1\right)=\left\{1\right\}\)

=> 3n - 2 và 4n - 3 là 2 số nguyên tố cùng nhau

=> phân số \(\frac{3n-2}{4n-3}\)tối giản.

2 tháng 12 2017

Ta có : \(\frac{3n+5}{n+1}=\frac{3n+3+2}{n+1}=1+\frac{2}{n+1}\)

Vậy để Biểu thức trên có giá trị là một số tự nhiên

\(\Rightarrow n+1\inƯ\left(2\right)=\left(1;2\right)\)

\(\Rightarrow n\in\left(0;1\right)\)

27 tháng 2 2017

Để \(\frac{n+6}{15}\) là số tự nhiên <=> n + 6 ⋮ 15 => n + 6 = 15k => n = 15k - 6 ( k thuộc N ) (1)

Ta có : \(\frac{3n-2}{n+1}=\frac{3n+3-5}{n+1}=\frac{3\left(n+1\right)-5}{n+1}=3-\frac{5}{n+1}\)

Để \(3-\frac{5}{n+1}\)là số tự nhiên <=> \(\frac{5}{n+1}\)là số tự nhiên

=> n + 1 là ước của 5 => Ư(5) = { - 5; - 1; 1; 5 }

=> n + 1 = { - 5; - 1; 1; 5 }

=> n = { - 6; - 2; 0; 4 }

Mà theo (1) , n phải có dạng 15k - 6 => n = - 6

Mà theo đề bài n là số tự nhiên nên n không tồn tại

4 tháng 8 2017

\(\frac{n+3}{n+4}\)

Gọi d=U7CLN(n+3,n+4)

\(\Rightarrow\hept{\begin{cases}\left(n+3\right)⋮d\\\left(n+4\right)⋮d\end{cases}}\)

\(\Leftrightarrow\left(n+4\right)-\left(n+3\right)⋮d\)

\(\Leftrightarrow1⋮d\)   \(\Leftrightarrow d=1\)

          Vậy  \(\frac{n+3}{n+4}\)là phân số tối giản

( *Bạn làm theo pp: Phân số tối giản khi U7CLN(tử,mẫu)=1

  *Cái dòng (n+4) - (n+3) thì mấy bài tương tự, cái dòng đó ta sẽ lấy số lớn trừ số nhỏ chứ không nhất thiết phải lấy số dưới trừ số trên)

Mấy bài kia bạn làm tương tự nha! Chúc bạn học giỏi!!!

18 tháng 2 2017

Bài 1:

ĐKXĐ:\(n\ne-2\)

Ta có:\(\frac{n-1}{n+2}=1-\frac{3}{n+2}\)

Để phân số đó nguyên thì \(n+2\inƯ\left(3\right)\)

                          => \(n+2=\left\{-3;-1;1;3\right\}\)

                           => \(n=\left\{-5;-3;-1;1\right\}\)

Mà \(n\in N\)=> n=1

Bài 2:

ĐKXĐ \(a\ne1;-1\)

Để \(\frac{21}{a}\in N\)

Thì \(a\inƯ\left(21\right)\)

=>a={1;3;7;21} (1)

Để \(\frac{22}{a-1}\in N\)thì \(a-1\inƯ\left(22\right)\)

=>a-1={1;2;11;22}

=>a={1;3;12;23}   (2)

Để \(\frac{24}{a+1}\in N\)Thì \(a+1\inƯ\left(24\right)\)

=> a+1={1;2;4;6;12;24}

=>a={0;1;3;5;11;23}   (3)

Kết hợp (1);(2);(3) và ĐKXĐ ta có a=3 thì cả 3 phân số trên là số tự nhiên

18 tháng 2 2017

ko bit

3 tháng 8 2016

Để \(\frac{3n+2}{2n-1}\)là số tự nhiên

=> 3n + 2 chia hết cho 2n - 1

=> 6n + 4 chia hết cho 2n - 1

=> 6n - 3 + 7 chia hết cho 2n - 1

=> 3(2n-1) + 7 chia hết cho 2n - 1

=> 7 chia hết cho 2n - 1

=> 2n - 1 \(\in\)Ư(7) = {1;-1;7;-7}

=> n \(\in\){1;0;4;-3}

Thử lại n = 1 thỏa mãn

Vậy n = 1

27 tháng 4 2018

để n là số tự nhiên thì n phải là ƯC(3,2)

nên n có thể  bằng 6,12,18,24...