Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\dfrac{a}{b}\) tối giản \(\Leftrightarrow\dfrac{b}{a}\) tối giản \(\left(a;b\in N\right)\)
\(\Leftrightarrow\dfrac{7}{n+9};\dfrac{8}{n+10};..........;\dfrac{31}{n+33}\) tối giản khi và chỉ khi :
\(\dfrac{n+9}{7};\dfrac{n+10}{8};.......;\dfrac{n+33}{31}\) tối giản
\(\Leftrightarrow\dfrac{\left(n+2\right)+7}{7};\dfrac{\left(n+2\right)+8}{8};........;\dfrac{\left(n+2\right)+31}{31}\)
\(\Leftrightarrow n+2⋮̸\) \(7;8;.......;33\)
Mà \(n+2\) nhỏ nhất do \(n\) nhỏ nhất
\(\Leftrightarrow n+2=35\)
\(\Leftrightarrow n=33\)
Vậy ...
các phân số trên đưa về dạng : k/(n + k + 2) đặt là phân số (1)
với k= 7, 8, ..., 31
Muốn (1) tối giản <=> tử k và mẫu (n+k+2) không có ước chung > 1 khi k chạy từ 7, 8, ... , 31
Muốn vậy thì: n = 21
Giải:
Ta có:
Các phân số đã cho đều có dạng \(\dfrac{a}{a+\left(n+2\right)}\)
Vì các phân số này tối giản
Nên \(n+2\) và \(a\) phải là hai số nguyên tố cùng nhau
Vậy \(n+2\) phải nguyên tố cùng nhau với \(7;8;9;...31\) và \(n+2\) phải nhỏ nhất
\(\Rightarrow n+2\) phải là số nguyên tố nhỏ nhất lớn hơn \(31\)
\(\Rightarrow n+2=37\Rightarrow n=35\)
Vậy \(n=35\) thì các phân số trên tối giản
cảm ơn bạn nhìu nhìu