K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2018

a, Vì n ⋮ n nên để (n+3) ⋮ n thì 3 ⋮ n. Từ đó suy ra: n ∈ {1;3}

b, Vì 7nn nên để (7n+8)n thì 8n. Từ đó suy ra: n ∈ {1;2;4;8}

c, Vì 12nn nên để (35 - 12n)n thì 35n. Từ đó suy ra: n ∈ {1;5;7;35}

Vì n < 3 nên n = 1

Vậy n = 1

11 tháng 10

(n+3):3

23 tháng 11 2021

\(a,\Rightarrow n\inƯ\left(5\right)=\left\{1;5\right\}\\ b,\Rightarrow n\inƯ\left(4\right)=\left\{1;2;4\right\}\\ c,\Rightarrow n\inƯ\left(27\right)=\left\{1;3\right\}\left(n< 7\right)\)

23 tháng 11 2021

a,( 1;5 )

b, ( 1; 2; 4)

c (1;3 )

19 tháng 1 2018

a: Gọi d=UCLN(4n+8;2n+3)

\(\Leftrightarrow4n+8-4n-6⋮d\)

\(\Leftrightarrow2⋮d\)

mà 2n+3 là số lẻ

nên d=1

=>ĐPCM

b: Gọi a=UCLN(7n+4;9n+5)

\(\Leftrightarrow63n+36-63n-35⋮a\)

=>a=1

=>ĐPCM

8 tháng 4 2022

Me cảm lan bẹn!

24 tháng 10 2016

a) \(\frac{7n+8}{n}=\frac{7n}{n}+\frac{8}{n}=7+\frac{8}{n}\)

\(\Rightarrow n\in\text{Ư}\left(8\right)=\left\{1;2;4;8\right\}\)

b) \(\frac{35-12n}{n}=\frac{35}{n}-\frac{12n}{n}=\frac{35}{n}-12\)

\(\Rightarrow n\in\text{Ư}\left(35\right)=\left\{1;3;5;7;35\right\}\) 

Loại \(n\in\left\{1;3\right\}\) vì n > 3.

Vậy: \(n\in\left\{5;7;35\right\}\)

c) \(\frac{n+8}{n+3}=\frac{n+3+5}{n+3}=\frac{n+3}{n+3}+\frac{5}{n+3}=1+\frac{5}{n+3}\)

\(\Rightarrow n+3\in\text{Ư}\left(5\right)=\left\{1;5\right\}\)

\(\Rightarrow n+3=1\Rightarrow n=1-3=-2\) (loại vì -2 < 0)

\(\Rightarrow n+3=5\Rightarrow n=2\)

Vậy: n = 2

24 tháng 10 2016

giải đầy đủ ba câu nhưng không yêu cầu chi tiết

a. n phải chia hết cho n rồi cãi sao đuọc

7 n càng chia hết cho n

vậy 8 phải chia hết cho n 

n=(1.2.4.8)

b. ồ n<3 thì còn mỗi 1.2  n=1 hiển nhiên rồi, n=2 ko cần tử biết loại 

vậy n=1 (người ra câu nàylãng xẹt)

c. (n+8)/(n+3) ko có dấu chia hết tạm dùng (...) là dấu chia hết

(n+3) (...) (n+3) hiển nhiên

(n+8) (...) (n+3)

=>[n+8-(n+3)] (...)(n+3)

5(...)(n+3)

vậy n+3=(1,5)

n=(2)

14 tháng 7 2017

 n + 5 ) chia hết cho n ( n khác 0)

( 7n + 8) chia hết cho n ( n khác 0)

35 - 12n chia hết cho n ( n<3 và n khác 0)

a)\(\left(n+5\right)⋮n\)

\(\Rightarrow n+5=1;-1;5;-5\)

\(\Rightarrow n=-4;-6;0;-10\)

16 tháng 6 2016

a)n+3 chia hết cho n

Mà n chia hết cho n =>3 chia hết cho n

=> n ={1,3,-1,-3}

b)n+n+n+n+n+n+n+1+1+1+1+1+1+1+1

=>(n+1).7+1 chia hết n 

Mà n chia hết cho n => 1 chia hết cho n

n={1,-1}

22 tháng 10 2017

qqqqqqqqq

Bài 5: 

b: Ta có: \(n+6⋮n+2\)

\(\Leftrightarrow n+2\in\left\{2;4\right\}\)

hay \(n\in\left\{0;2\right\}\)

c: Ta có: \(3n+1⋮n-2\)

\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)

hay \(n\in\left\{1;3;9\right\}\)

30 tháng 7 2017

a, Vì (n+3) ⋮ (n+3) nên để (n+8) ⋮ (n+3) thì: [(n+8) - (n+3)] ⋮ (n+3) hay 5 ⋮ (n+3), Suy ra: n+3 ∈ {1;5}

Vì n + 3 ≥ 3 nên n + 3 = 5 => n = 2

Vậy n = 2

b, Vì 3(n+4) ⋮ (n+4) nên để (16 - 3n)(n+4) thì: [(16 - 3n)+3(n+4)](n+4) hay 28 ⋮ (n+4)

Suy ra: n+4{1;2;4;7;14;28}

Vì 0 ≤ n ≤6 nên 4 ≤ n+4 ≤ 10.

Từ đó ta có: n+4{4;7} hay n{0;3}

c, Vì 5(9 - 2n) ⋮ (9 - 2n) nên nếu (5n+2)(9 - 2n) thì 2(5n+2)(9 - 2n)

Suy ra: [5(9 - 2n)+2(5n+2)](9 - 2n) hay 49(9 - 2n) => 9 - 2n ∈ {1;7;49}

Vì 9 - 2n ≤ 9 nên 9 - 2n{1;7}

Từ đó ta có n{4;1} với n < 5

Thử lại ta thấy n = 4 hoặc n = 1 đều thõa mãn.

Vậy n{4;1}