K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
25 tháng 2 2021

ta có 

\(n^5+1=n^5+n^2-n^2+1=n^2\left(n^3+1\right)-\left(n-1\right)\left(n+1\right)\) chia hết cho \(n^3+1\)

Khi \(\left(n-1\right)\left(n+1\right)\) chia hết cho \(n^3+1=\left(n+1\right)\left(n^2-n+1\right)\)

mà \(n^2-n+1>n-1\Rightarrow\left(n-1\right)\left(n+1\right)< n^3+1\)\(\)

\(\Rightarrow\orbr{\begin{cases}n^3+1=1\\n^2-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}n=0\\n=1\end{cases}}\)

20 tháng 11 2018

Khai triển n^5 + 1 = (1 + n)( n^4 - n^3 + n^2 - n + 1) 
n^3 + 1 = (n + 1)( n^2 - n + 1) 
=> n khác -1 để pháp chia có nghĩa 
Để n^5 + 1 chia hết cho n^3 + 1 thì: 
n^4 - n^3 + n^2 - n + 1 chia hết cho n^2 - n + 1 
n^2 ( n² + n + 1) + 1 - n chia hết cho n^2 - n +1 

=> 1 - n chia hết cho n² - n + 1 thì pt trên mới xảy ra chia hết 

1 - n chia hết cho n² - n + 1 
(-n)(1 - n) chia hết cho n² - n + 1 
n² - n + 1 - 1 chia hết cho n² - n + 1 

Để pt trên chia hết thì 1 chia hết cho n² - n + 1 
=> n² - n + 1 = 1 => n = 0;1 
n² - n + 1 = -1 => n² - n + 2 = 0 ( vô nghiệm, tự c/m) 

Vậy với n = 0;1 thì ...

20 tháng 11 2018

Ta có:

n5+1 chia hết cho n3+1

Mà: n5+n2 chia hết cho n3+1

=> n2-1 chia hết cho n3+1

Mà: n3+1 chia hết cho n3+1

=> n3+1-n(n2-1) chia hết cho n3+1

=> 1-n chia hết cho n3+1

=>n2-n3 chia hết cho n3+1

=> n3+n2+1 chia hết cho n3+1

=> nchia hết cho n3+1

=>n3 chia hết cho n3+1

=> 1 chia hết cho n3+1

=> n=0

4 tháng 9 2017

Giả sử A = n^2 + 3n + 5 chia hết cho 121 
=> 4A = 4n^2 + 12n + 20 chia hết cho 121 
=> 4A = (2n + 3)^2 + 11 chia hết cho 121 (1) 
=> 4A = (2n + 3 )^2 + 11 chia hết cho 11 (vì 121 chia hết cho 11) 
Vì 11 chia hết cho 11 nên (2n + 3)^2 phải chia hết cho 11 
Lại có 11 là số nguyên tố nên 2n + 3 cũng chia hết cho 11 
=> (2n + 3)^2 chia hết cho 11^2 = 121 (2) 
Từ (1)(2) suy ra 11 phải chia hết cho 121 (vô lí) 

Vậy : n^2 + 3n + 5 không chia hết cho 121 với mọi n thuộc N

hi xin lỗi nha đó là bài khác thui

link nè

Bài toán lớp 9 !!!!!!!? | Yahoo Hỏi & Đáp

4 tháng 9 2017

cảm ơn bạn nha

10 tháng 12 2016

a/ Với n = 2k thì

\(3^n-1=3^{2k}-1=9^k-1=\left(9-1\right)\left(9^{k-1}+9^{k-2}...\right)=8\left(9^{k-1}+9^{k-2}...\right)\)

Chia hết cho 8

Với n = 2k + 1 thì

\(3^n-1=3^{2k+1}-1=3.3^{2k}-1=3\left(3^{2k}-1\right)+2\)

Chia 8 dư 2

Vậy vơi mọi n tự nhiên chẵn thì \(3^n-1\)chia hết cho 8

Câu còn lại làm tương tự