K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2016

a/ Với n = 2k thì

\(3^n-1=3^{2k}-1=9^k-1=\left(9-1\right)\left(9^{k-1}+9^{k-2}...\right)=8\left(9^{k-1}+9^{k-2}...\right)\)

Chia hết cho 8

Với n = 2k + 1 thì

\(3^n-1=3^{2k+1}-1=3.3^{2k}-1=3\left(3^{2k}-1\right)+2\)

Chia 8 dư 2

Vậy vơi mọi n tự nhiên chẵn thì \(3^n-1\)chia hết cho 8

Câu còn lại làm tương tự

a: \(n^3-2⋮n-2\)

=>\(n^3-8+6⋮n-2\)

=>\(6⋮n-2\)

=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)

b: \(n^3-3n^2-3n-1⋮n^2+n+1\)

=>\(n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)

=>\(3⋮n^2+n+1\)

=>\(n^2+n+1\in\left\{1;-1;3;-3\right\}\)

mà \(n^2+n+1=\left(n+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall n\)

nên \(n^2+n+1\in\left\{1;3\right\}\)

=>\(\left[{}\begin{matrix}n^2+n+1=1\\n^2+n+1=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)

17 tháng 6 2015

(3n-5)(2n+1)+7(n-1)=6n2-7n-5+7n-7

                           =6n2-12

                           =3(2n-4)

=>(3n-5)(2n+1)+7(n-1) chia hết cho 3, với mọi n

(n-4)(5n+3)-(n+1)(5n-2)+4=5n2-17n-12-(5n2+3n-2)

 =5n2-17n-12-5n2-3n+2

=-20n-10

=5(-4n-2)

=>(n-4)(5n+3)-(n+1)(5n-2)+4 chia hết cho 5, với mọi n

trieu dang làm đúng rùi

1: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;4;2;-2;-1;-4\right\}\)

\(\Leftrightarrow3n\in\left\{0;3;-3\right\}\)

hay \(n\in\left\{0;1;-1\right\}\)

17 tháng 1 2019

Ta có:

a)  ( 3 n   + 1 ) 2  - 25 = 3(3n - 4)(n + 2) chia hết cho 3;

b)  ( 4 n   + 1 ) 2  - 9 = 8(2n - 1)(n +1) chia hết cho 8.

15 tháng 12 2016

làm câu