Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3n + 8 chia hết cho n + 2
3n + 6 + 2 chia hết cho n + 2
Mà 3n + 6 chia hết cho n + 2
Nên 2 chia hết cho n + 2
n + 2 thuộc Ư(2) = {-2 ; - 1; 1 ; 2}
Mà n là số tự nhiên nên n = 0
3n + 4 chia hết cho n
Mà 3 n chia hết cho n
Nên 4 chia hết cho n
=> n thuộc Ư(4) = {1;2;4}
n khác 1 => n thuộc {2;4}
Câu 1: Làm lại nha:))
Ta có: 3n + 8 chia hết cho n + 2
Mà: n + 2 chia hết cho n + 2
=> 3( n + 2 ) chia hết cho n + 2
=> 3n + 6 chia hết cho n + 2
Từ đó => ( 3n + 8 ) - ( 3n + 6 ) chia hết cho n + 2
=> 2 chia hết cho n + 2
=> n + 2 \(\in\) Ư( 2 )
=> n + 2 = 2
=> n = 0
trả lời...................................
đúng nhé..............................
hk tốt.........................................
1)Ta có : 3n+4 = 3 ( n - 1 ) + 3 + 4
= 3 ( n - 1 ) + 7
Vì ( n - 1 ) chia hết cho ( n -1 ) =>3 ( n - 1 ) chia hết cho ( n -1 )
Để [ 3 ( n - 1 ) + 7 ] chia hết cho ( n - 1 ) thì 7 chia hết cho n - 1
Suy ra : n -1 thuộc Ư( 7 ) = { 1 ; 7 }
Nếu : n - 1 = 7 thì n = 7 + 1 = 8 ( thỏa mãn ĐK )
Nếu : n - 1 = 1 thì n = 1 + 1 = 2 ( thỏa mãn ĐK )
Vậy n = 8 hoặc n = 2 là giá trị cần tìm
Ta có : n+7 = ( n + 2 ) + 5
Ta có : (n+2 ) + 5 chia hết cho n+ 2
Mà n+2 chia hết cho n+2 , ( n+2 ) + 5 chia hết cho n+2 . Vậy 5 chia hết cho n + 2
Suy ra : n+2 thuộc Ư(5)
Suy ra : n + 2 thuộc { 1 ;5}
Suy ra n thuộc {3;7}
Duyệt đi , chúc bạn học giỏi
Giải:
n + 7 chia hết cho n + 2
=> ( n + 2 ) + 5 chia hết cho n + 2
=> 5 chia hết cho n + 2
=> \(n+2\in\left\{1;5\right\}\)
+) n + 2 = 1 => n = -1 ( loại )
+) n + 2 = 5 => n = 3 ( chọn )
Vậy n = 3
1) a) Ta có :
15 + 7n chia hết cho n
mà n chia hết cho n
nên 7n chia hết cho n
=> (15 + 7n ) - 7n chia hết cho n
=> 15 chia hết cho n
=> n thuộc Ư(15) nên n = 1 ; -1 ; 3 ; -3 ; 5 ; -5 ;15 ; -15
b) Ta có :
n + 28 chia hết cho n +4
mà n+4 chia hết cho n+4
nên n+28 - (n+4) chia hết cho n+4
=> 32 chia hết cho n+4
=>n+4 thuộc Ư(32) nên n+4=-1;1;-2;2;-4;4;8;-8;16;-16;32;-32
=> n lần lượt = -5;-3;-6;-2;-8;0;4;-12;12;-20;28;-36
phần 2 dài quá vs m cx không chắc đúng nên làm phần 3 luôn
3) vì số tự nhiên chia cho 18 dư 12 có dạng là : 18k + 12
mà 18 chia hết cho 6
và 12 chia hết cho 6
nên 18k + 12 chia hết cho 6
Vậy không tồn tại số tự nhiên chia cho 18 dư 12 , còn chia 6 dư 2
2. Vì 66a + 55b = 111 011
11.6a+11.5b=111011
11.(6a+5b) =111011
11*11ab=111011
mà 111011 không chia hết cho 11
==>Không thể tìm được a và b
a: Đặt \(A=\overline{2a3b}\)
A chia hết cho2 và 5 khi A chia hết cho 10
=>b=0
=>\(A=\overline{2a30}\)
A chia hết cho 9
=>2+a+3+0 chia hết cho 9
=>a+5 chia hết cho 9
=>a=4
Vậy: \(A=2430\)
b: \(42=2\cdot3\cdot7;54=3^3\cdot2\)
=>\(ƯCLN\left(42;54\right)=2\cdot3=6\)
=>\(ƯC\left(42;54\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
c: \(n+4⋮n+1\)
=>\(n+1+3⋮n+1\)
=>\(3⋮n+1\)
=>\(n+1\in\left\{1;-1;3;-3\right\}\)
=>\(n\in\left\{0;-2;2;-4\right\}\)
mà n là số tự nhiên
nên \(n\in\left\{0;2\right\}\)
Ta có n+4 chia hết cho n-2
=>n-2+6 chia hết cho n-2
Vì n-2 chia hết cho n-2 =>6 chia hết cho n-2
=>n-2=1,2,3,6
n=3,4,5,8
\(\left(n+4\right)⋮\left(n-2\right)\)
\(\Rightarrow\left(n-2+6\right)⋮\left(n-2\right)\)
\(\Rightarrow6⋮\left(n-2\right)\left[\left(n-2\right)⋮\left(n-2\right)\right]\)
\(\Rightarrow n-2\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
\(\text{Mà }n\inℕ\Rightarrow n\in\left\{0;1;4;5;8\right\}\)