Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
Câu 1:
gọi n-1/n-2 là M.
Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1
Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)
Gọi d = ƯCLN (n - 1; n - 2)
=> n - 1 - (n - 2) ⋮⋮d *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1
=> 1 ⋮⋮d
=> d ∈∈Ư (1)
Ư (1) = {1}
=> d = 1
Mà ngay từ lúc đầu d phải bằng 1 rồi.
Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.
a) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1
Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 \(⋮\)d; 14n+3 \(⋮\)d
=> (14n+3) -(21n+4) \(⋮\)d
=> 3(14n+3) -2(21n+4) \(⋮\)d
=> 42n+9 - 42n -8 \(⋮\)d
=> 1\(⋮\)d
=> 21n+4/14n+3 là phân số tối giản
Vậy...
c) Gọi ƯC(21n+3; 6n+4) =d; 21n+3/6n+4 =A => 21n+3 \(⋮\)d; 6n+4 \(⋮\)d
=> (6n+4) - (21n+3) \(⋮\)d
=> 7(6n+4) - 2(21n+3) \(⋮\)d
=> 42n +28 - 42n -6\(⋮\)d
=> 22 \(⋮\)cho số nguyên tố d
d \(\in\){11;2}
Nếu phân số A rút gọn được cho số nguyên tố d thì d=2 hoặc d=11
Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2. 21n+3 chia hết cho 2 nếu n là số lẻ
Nếu A có thể rút gọn cho 11 thì 21n+3 \(⋮\)11 => 22n -n +3\(⋮\)11 => n-3 \(⋮\)11 Đảo lại với n=11k+3 thì 21n+3 và 6n+4 chia hết cho 11
Vậy với n là lẻ hoặc n là chẵn mà n=11k+3 thì phân số đó rút gọn được
a, ta có n+2/n-1=n-1+3/n-1(biến đổi tử để giống mẫu)=1+3/n-1
để n+2/n-1 có giá trị nguyên thì n-1 thuộc Ư(3)
ta có bảng: n-1 1 3
n 2 4
Vậy 2 STn đó là 2 hoặc 4
b, Gọi d là ƯC(n+1;2n+1)
ta có: n+1/2n+1=2n+2/2n+1
d= (2n+2)-(2n+1)= 1
Hai phân số tối giản khi tử và mẫu là 2 số nguyên tố cùng nhau và có ƯC=1
=) phân số đó tối giản
Xem cách giải mình nhé bạn, đúng thì nhé!
Câu a/
Để $\frac{7}{2n+1}$ là phân số tối giản thì $ƯCLN(7,2n+1)=1$
$\Rightarrow 2n+1\neq 7k$ với $k$ là số tự nhiên bất kỳ
$\Rightarrow n\neq \frac{7k-1}{2}$ với $k$ là số tự nhiên bất kỳ.
b.
Gọi $d=ƯCLN(n+7, n+2)$
$\Rightarrow n+7\vdots d; n+2\vdots d$
$\Rightarrow (n+7)-(n+2)\vdots d$
$\Rightarrow 5\vdots d$
$\Rightarrow d=1$ hoặc $d=5$
Để phân số đã cho tối giản thì $d\neq 5$
Điều này xảy ra khi $n+2\not\vdots 5$
$\Leftrightarrow n\neq 5k-2$ với $k$ là số tự nhiên bất kỳ.
Đây là dạng toán nâng cao chuyên đề phân số cấu trúc thi học sinh giỏi, thi chuyên. Hôm nay olm sẽ hướng dẫn em làm dạng này như sau.
a; \(\dfrac{n-2}{n+1}\) (n \(\in\) N)
Gọi ước chung lớn nhất của n - 2 và n + 1 là d
Theo bài ra ta có: \(\left\{{}\begin{matrix}n-2⋮d\\n+1⋮d\end{matrix}\right.\)
n + 1 - (n - 2) ⋮ d
n + 1 - n + 2 ⋮ d
(n - n) + (1 + 2) ⋮ d
3 ⋮ d
⇒ d = 1; 3
Để A = \(\dfrac{n-2}{n+1}\) là phân số tối giản thì d ≠ 3
⇒ n + 1 ≠ 3d ⇒ n ≠ 3d - 1 (d \(\in\) N*)
B = \(\dfrac{n+5}{n-2}\) (đk n \(\in\) N)
Gọi ước chung lớn nhất của n + 5 và n - 2 là: d
Ta có: \(\left\{{}\begin{matrix}n+5⋮d\\n-2⋮d\end{matrix}\right.\)
n + 5 - (n - 2) ⋮ d
n + 5 - n + 2 ⋮ d
(n - n) + (5 + 2) ⋮ d
7 ⋮ d
d = 1; 7
Để B = \(\dfrac{n+5}{n-2}\) là phân số tối giản thì d ≠ 7
n - 2 ≠ 7k
n ≠ 7k + 2 (k \(\in\) N)