Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = \(\dfrac{2n+2}{n+2}\) + \(\dfrac{5n+17}{n+2}\) - \(\dfrac{3n}{n+2}\) (đk n ≠ -2)
B = \(\dfrac{2n+2+5n+17-3n}{n+2}\)
B = \(\dfrac{4n+19}{n+2}\) = 4 + \(\dfrac{11}{n+2}\)
B \(\in\) N ⇔ 11 ⋮ n + 2 và \(\dfrac{11}{n+2}\) ≤ - 4
\(\dfrac{11}{n+2}\) ≤ - 4 ⇒ n + 2 ≥ \(\dfrac{11}{-4}\) n ≥ - 2 - \(\dfrac{11}{4}\) = - 4,75
11 ⋮ n + 2 ⇒ n + 2 \(\in\) Ư(11);
11 = 11 ⇒ n + 2 \(\in\) Ư(11) = {-11; -1; 1;11}
Lập bảng ta có:
n+2 | -11 | -1 | 1 | 11 |
n | -13 | -3 | -1 | 9 |
Kết luận: Vì n ≥ -4,75; n \(\in\) N nên theo bảng trên ta có n = 9
Đề bài sai nha!
\(B=\frac{4n+2}{n+2}=\frac{4n+8-6}{n+2}\)
\(=4-\frac{6}{n+2}\)
Để B là stn thì 6/n+2 là stn.
=> 6 chia hết cho n+2
=> n+2 thuộc Ư(6)
......................(tự làm nhé)...........................
Bài 2:
a) Ta có: \(A=\dfrac{4}{n-1}+\dfrac{6}{n-1}-\dfrac{3}{n-1}\)
\(=\dfrac{4+6-3}{n-1}\)
\(=\dfrac{7}{n-1}\)
Để A là số tự nhiên thì \(7⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(7\right)\)
\(\Leftrightarrow n-1\in\left\{1;7\right\}\)
hay \(n\in\left\{2;8\right\}\)
Vậy: \(n\in\left\{2;8\right\}\)
ta có B=2n+9/n+2-3n+5n+1/n+2=4n+10/n+2 Để B là STN thì 4n+10⋮n+2 4n+8+2⋮n+2 4n+8⋮n+2 ⇒2⋮n+2 n+2∈Ư(2) Ư(2)={1;2} Vậy n=0
B = \(\frac{2n+9}{n+2}\)+ \(\frac{5n+17}{n+2}\)-\(\frac{3n}{n+2}\)
B= \(\frac{2n+9+5n+17-3n}{n+2}\)
B= \(\frac{\left(2n+5n-3n\right)+9+17}{n+2}\)
B= \(\frac{4n+9+17}{n+2}\)= \(\frac{4n+26}{n+2}\)
Để biểu thức B là số tự nhiên thì ( 4n+26) \(⋮\)n+2
=> n+2 \(⋮\)n+2
=> (4n+26) - 4(n+2)\(⋮\)n+2
=> 4n+26 - 4n - 8 \(⋮\)n+2
=> 18 \(⋮\)n+2
=> n+2 \(\in\)Ư(18)={1; 2; 9; 3; 6; 18; -1; -2; -9; -3; -6; -18}
=> N\(\in\){ -1; 0; 7; 1; 4; 16; -3; -4; -5; -11; -20; -8}
Vậy...
Ta có \(B=\frac{2n+2+5n+17-3n}{n+2}=\frac{\left(2n+5n-3n\right)+\left(2+17\right)}{n+2}\)
\(=\frac{4n+19}{n+2}=\frac{4n+8+11}{n+2}=\frac{4n+8}{n+2}+\frac{11}{n+2}=4+\frac{11}{n+2}\)
Để B là số tự nhiên \(\Leftrightarrow\frac{11}{n+2}\) là số tự nhiên
\(\Rightarrow\) n + 2 \(\in\) Ư(11) . Vì n là số tự nhiên \(\Leftrightarrow\) n + 2 \(\in\) {1 ; 11}
\(\Leftrightarrow\) n = 9
Ta có: \(\frac{2n+2}{2+n}+\frac{5n+17}{2+n}-\frac{3n}{2+n}=\frac{2n+2+5n+17-3n}{2+n}=\frac{\left(2n+5n-3n\right)+\left(2+17\right)}{2+n}=\frac{4n+19}{2+n}\)
Để B là số tự nhiên thì 4n+19 : 2+n
=> 4*(n+2)-11:2+n
=> 11:2+n hay 2+n thuộc Ư(11)={1;11}
=> n =9.
Vậy để B có giá trị là số nguyên thì n=9
(lưu ý: dấu : tức là chia hết cho)
Chúc bạn học tốt!^_^
a, Gọi d = ƯCLN(n+1,2n+3) (d thuộc N*)
Ta có: \(\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
=> d = 1
=> đpcm
b, Gọi d = ƯCLN(2n+3,4n+8) (d thuộc N*)
ta có: \(\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)
\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Mà 2n + 3 là số lẻ
=> d = 1
=> đpcm
c, Gọi d = ƯCLN(3n+2,5n+3) (d thuộc N*)
Ta có: \(\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)
\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
=> d = 1
=> đpcm
, Gọi d = ƯCLN(n+1,2n+3) (d thuộc N*)
Ta có: ⎧⎨⎩n+1⋮d2n+3⋮d⇒⎧⎨⎩2n+2⋮d2n+3⋮d{n+1⋮d2n+3⋮d⇒{2n+2⋮d2n+3⋮d
⇒2n+3−(2n+2)⋮d⇒2n+3−(2n+2)⋮d
⇒1⋮d⇒1⋮d
=> d = 1
=> đpcm
b, Gọi d = ƯCLN(2n+3,4n+8) (d thuộc N*)
ta có: ⎧⎨⎩2n+3⋮d4n+8⋮d⇒⎧⎨⎩4n+6⋮d4n+8⋮d{2n+3⋮d4n+8⋮d⇒{4n+6⋮d4n+8⋮d
⇒4n+8−(4n+6)⋮d⇒4n+8−(4n+6)⋮d
⇒2⋮d⇒2⋮d
⇒d∈{1;2}⇒d∈{1;2}
Mà 2n + 3 là số lẻ
=> d = 1
=> đpcm
c, Gọi d = ƯCLN(3n+2,5n+3) (d thuộc N*)
Ta có: ⎧⎨⎩3n+2⋮d5n+3⋮d⇒⎧⎨⎩15n+10⋮d15n+9⋮d{3n+2⋮d5n+3⋮d⇒{15n+10⋮d15n+9⋮d
⇒15n+10−(15n+9)⋮d⇒15n+10−(15n+9)⋮d
⇒1⋮d⇒1⋮d
=> d = 1
=> đpcm
a) Đặt ƯCLN(n+1; 2n+3) = d
\(\Rightarrow\left\{\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left\{\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Rightarrow\) \(\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow2n+3-2n-2⋮d\)
\(\Rightarrow1⋮d\)
\(\Leftrightarrow d\inƯ_{\left(1\right)}=1\)
Vậy phân số \(\frac{n+1}{2n+3}\) tối giản với mọi \(n\in N\).
b) Đặt ƯCLN(2n+3; 4n+8) = d.
\(\Rightarrow\left\{\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left\{\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow4n+8-4n-6⋮d\)
\(\Rightarrow2⋮d\Leftrightarrow d\inƯ_{\left(2\right)}=\left\{1;2\right\}\)
Mà \(2n+3=2n+2+1\) có \(2n+2⋮2\) nhưng \(1⋮̸2\)
\(\Rightarrow d=1\)
Vậy phân số \(\frac{2n+3}{4n+8}\) tối giản với mọi \(n\in N\).
c) Đặt ƯCLN(3n+2; 5n+3) = d.
\(\Rightarrow\left\{\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left\{\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)
\(\Rightarrow\left(15n+10\right)-\left(15n+9\right)⋮d\)
\(\Rightarrow15n+10-15n-9⋮d\)
\(\Rightarrow1⋮d\Leftrightarrow d\inƯ_{\left(1\right)}=1\)
Vậy phân số \(\frac{3n+2}{5n+3}\) tối giản với mọi \(n\in N\).
Nếu các phân số trên là phân số tối giản thì ước chung lớn nhât của tử và mẫu của các phân số phải là 1
Gọi d là ước chung lớn nhất của tử và mẫu các phân số
a, n+1 chia hết cho d =>2n+2 chia hết cho d
2n+3 chia hết cho d
Từ hai giả thiết trên =>(2n+3)-(2n+2) chia hết cho d
1 chia hết cho d
=>d=1
Phân số trên tối giản với mọi số tự nhiên n
b,2n+3 chia hết cho d =>4n+6 chia hết cho d
4n+8 chia hết cho d
Từ hai giả thiết trên =>(4n+8)-(4n+6) chia hết cho d
=> 2 chia hết cho d
=>d thuộc {1;2}
Phân số trên chưa tối giản với mọi số tự nhiên n
c, 3n+2 chia hết cho d => 15n+10 chia hết cho d
5n+8 chia hết cho d => 15n+24 chia hết cho d
Từ hai giả thiết trên => (15n+24)-(15n+10) chia hết cho d
=> 14 chia hết cho d
=>d {1;2;7;14)
Phân số trên chưa tối giản với mọi số tự nhiên n
Mình làm xong rồi,nếu bài này chứng minh các phân số đều tối giản thì chắc chắn sai đề,không tin các bạn thử xem ở phân số b với c ý
c,Để phân số trên là phân số tối giản thì (3n+2;5n+3) = 1
Gọi \(d\inƯCLN\left(3n+2;5n+3\right)\)
Ta có:\(\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\) \(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\left(3n+2;5n+3\right)=1\)
Vậy phân số\(\dfrac{3n+2}{5n+3}\) là phân số tối giản
a,để phân số trên tối giản thì (n+1;2n+3) = 1
Gọi \(d\inƯCLN(n+1;2n+3)\) \(\left(d\in N\right)\)
Ta có: \(\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\) \(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\left(n+1;2n+3\right)=1\)
Vậy phân số \(\dfrac{n+1}{2n+3}\) là một phân số tối giản
\(A=\dfrac{2n+9}{n+2}-\dfrac{3n}{n+2}+\dfrac{5n+17}{n+2}\)
\(=\dfrac{2\left(n+2\right)+5}{n+2}-\dfrac{3\left(n+2\right)-6}{n+2}+\dfrac{5\left(n+2\right)+7}{n+2}\)
\(=\left(2+\dfrac{5}{n+2}\right)-\left(3-\dfrac{6}{n+2}\right)+\left(5+\dfrac{7}{n+2}\right)\)
\(=2+\dfrac{5}{n+2}-3+\dfrac{6}{n+2}+5+\dfrac{7}{n+2}\)
\(=\left(2-3+5\right)+\left(\dfrac{5}{n+2}+\dfrac{6}{n+2}+\dfrac{7}{n+2}\right)\)
\(=4+\dfrac{5+6+7}{n+2}\)
\(=4+\dfrac{18}{n+2}\)
Để A thuộc Z <=> \(\dfrac{18}{n+2}\in Z\)
<=> 18 chia hết cho n + 2
<=> n + 2 thuộc Ư(18) = {1; 2; 3; 6; 9; 18} (vì n thuộc N)
=> n = -1; 0; 1; 4; 7; 16
Trong các giá trị trên thì chỉ có -1 là không thỏa mãn.
Vậy n = 0; 1; 4; 7; 16
@Đỗ Thị Huyền Trang
\(A=\dfrac{2n+9}{n+2}-\dfrac{3n}{n+2}+\dfrac{5n+17}{n+2}\)
\(=\dfrac{2n+9-3n+5n+17}{n+2}\)
\(=\dfrac{4n+26}{n+2}\)
\(=\dfrac{4n+8+18}{n+2}\)
\(=\dfrac{4\left(n+2\right)+18}{n+2}=4+\dfrac{18}{n+2}\)
Để \(A\in Z\Rightarrow18⋮n+2\)
\(\Rightarrow n+2\in\left\{1;2;3;6;9;18\right\}\) ( do \(n+2\in N\) )
\(\Rightarrow n\in\left\{0;1;4;7;16\right\}\)( do \(n\in N\) )
Vậy ...