K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2017

=> (n+1) . [ (n-1) : 1 + 1 ] : 2 = 1830

=> (n+1) . n : 2 = 1830

=> n . (n+1) = 1830 . 2 = 3660 = 60 . 61 

=> n = 60

k mk nha

6 tháng 7 2016

Từ 1 -> n có : (n-1)+1=n (số số hạng)

Theo công thức tính tổng dãy số,ta có :

\(1+2+3+....+n=\frac{\left(n+1\right).n}{2}=1830=>\left(n+1\right).n=1830.2=3660=61.60\) (vì n.(n+1) là tích 2 số tự nhiên liên tiếp)

Vậy n=60

6 tháng 7 2016

1 + 2 + ... + n = 1830

=> (n + 1) . n : 2 = 1830

=> (n + 1) . n = 1830 . 2

=> (n + 1) . n = 3660

=> (n + 1) . n = 61 . 60

=> (n + 1) . n = (60 + 1) . 60

=> n = 60

28 tháng 7 2023

Bài 1:
Ta có dãy số 2, 4, 6, ..., 2n là một dãy số chẵn liên tiếp.
Ta có công thức tổng của dãy số chẵn liên tiếp là: S = (a1 + an) * n / 2
Với a1 là số đầu tiên của dãy, an là số cuối cùng của dãy, n là số phần tử của dãy.
Áp dụng công thức trên vào bài toán, ta có:
(2 + 2n) * n / 2 = 756
(2n + 2) * n = 1512
2n^2 + 2n = 1512
2n^2 + 2n - 1512 = 0
Giải phương trình trên, ta được n = 18 hoặc n = -19.
Vì n là số tự nhiên nên n = 18.
Vậy số tự nhiên n cần tìm là 18.

Bài 2:
Ta có p = (n - 2)(n^2 + n - 5)
Để p là số nguyên tố, ta có hai trường hợp:
1. n - 2 = 1 và n^2 + n - 5 = p
2. n - 2 = p và n^2 + n - 5 = 1
Xét trường hợp 1:
n - 2 = 1
=> n = 3
Thay n = 3 vào phương trình n^2 + n - 5 = p, ta có:
3^2 + 3 - 5 = p
9 + 3 - 5 = p
7 = p
Vậy n = 3 và p = 7 là một cặp số nguyên tố thỏa mãn.

Xét trường hợp 2:
n - 2 = p
=> n = p + 2
Thay n = p + 2 vào phương trình n^2 + n - 5 = 1, ta có:
(p + 2)^2 + (p + 2) - 5 = 1
p^2 + 4p + 4 + p + 2 - 5 = 1
p^2 + 5p + 1 = 1
p^2 + 5p = 0
p(p + 5) = 0
p = 0 hoặc p = -5
Vì p là số nguyên tố nên p không thể bằng 0 hoặc âm.
Vậy không có số tự nhiên n thỏa mãn trong trường hợp này.

Vậy số tự nhiên n cần tìm là 3.

28 tháng 7 2023

Bài 1

...=((2n-2):2+1):2=756

(2(n-1):2+1)=756×2

n-1+1=1512

n=1512

31 tháng 10 2017

BAI 1

ta co n+6 chia het  cho n 

ma n chia het cho n 

suy ra 6 chia het cho n 

ma n la mot so tu nhien nen 

ta co n thuoc U(6)=1,2,3,6

vay n bang 1,2,3,6

bai 2

(2n-1).(y+3)=12

suy ra 2n-1 va y+3 thuoc uoc cua 12 =1,12,3,4,6,2

neu 2n-1 =1 suy ra n=1

thi y+3=12 suy ra y=9

neu 2n-1=12 suy ra n=11/2(ko thoa man )

neu 2n-1=3 suy ra n=2

thi y+3=4 suy ra y=1

neu 2n-1=4 ruy ra n=5/2( ko thoa man )

neu 2n-1=6 suy ra n=7/2( ko thoa man )

neu 2n-1=2 suy ra n=3/2 ( ko thoa man )

vay cac cap so n :y can tim la (2;1),(1;9)

31 tháng 10 2017

n thuoc  boi cua 6

21 tháng 2 2016

1, \(\frac{n+3}{n+1}=\frac{n+1+2}{n+1}=1+\frac{2}{n+1}\)

Suy ra n+1 phải là Ư(2)={-2;-1;1;2}

\(\Rightarrow n=-3;-2;0;1\)

24 tháng 10 2023

n² + 3n + 1

= n² + n + 2n + 2 - 1

= (n² + n) + (2n + 2) - 1

= n(n + 1) + 2(n + 1) - 1

Để (n² + 3n + 1) ⋮ (n + 1) thì 1 ⋮ (n + 1)

⇒ n + 1 ∈ Ư(1) = {1}

⇒ n = 0

20 tháng 11 2014

Bài 1 :

Gọi số đó là a (a \(\in\) N)

Ta có :

a = 3k + 1\(\Rightarrow\)a + 2 = 3k + 3 chia hết cho 3

a = 5k + 3\(\Rightarrow\)a + 2 = 5k + 5 chia hết cho 5

a = 7k + 5\(\Rightarrow\)a + 2 = 7k + 7 chia hết cho 7 

\(\Rightarrow\)a + 2 chia hết cho 3 ; 5 ; 7 \(\Rightarrow\)a + 2 \(\in\) BC(3 ; 5 ; 7)

Mà a nhỏ nhất nên a + 2 nhỏ nhất 

\(\Rightarrow\)a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)

\(\Rightarrow\)a + 2 = 105 \(\Rightarrow\)a = 105 - 2 = 103

 

 

9 tháng 1 2017

Bài 1 :

Gọi số đó là a (a ∈ N)

Ta có :

a = 3k + 1⇒a + 2 = 3k + 3 chia hết cho 3

a = 5k + 3⇒a + 2 = 5k + 5 chia hết cho 5

a = 7k + 5⇒a + 2 = 7k + 7 chia hết cho 7 

⇒a + 2 chia hết cho 3 ; 5 ; 7 ⇒a + 2 ∈ BC(3 ; 5 ; 7)

Mà a nhỏ nhất nên a + 2 nhỏ nhất 

⇒a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)

⇒a + 2 = 105