Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có số có 2018 chữ số lớn nhất là 999....99 (2018 chữ số 9)
=> A lỡn nhất là 2018 x 9 = 18162
=> B lớn nhất là 1 + 8 + 1 + 6 + 2 = 18
=> C lớn nhất là 1 + 8 = 9
Ta có 3 x 9 + 2 = 29 mà 29 là số nguyên tố nên không tồn tại số như vậy
Giải:
Vì số dư lớn nhất bé hơn số chia 1 đơn vị nên suy ra số dư trong phép chia trên là 24
Số bị chia là:
\(25.23+24=599\)
Vậy số bị chia là 599
a
=>(n+2)=5 :.n+2
=>5:. n+2
=>n+2 E (1,5)
th1
N+2=1
th2 tựlamf
BÀI GIẢI
VÌ A là số tự nhiên chia hết cho 9 nên tổng các chữ số của A phải chia hết cho 9 suy ra số A có dạng đơn giản nhất là 1000...08 (với chữ số 0 xuất hiện 2018 lần)
B là tổng các chữ số của A nên +
C là tổng các chữ số của B nên
D là tổng các chữ số của C nên
đáp án là 9
Gọi số bé là a
=> Số lớn là 156 - a
Ta có (156 - a) : a = 6 dư 9
=> (156 - a - 9) : a = 6
=> 147 - a = 6a
=> 7a = 147
=> a = 21
=> 156 - a = 135
Vậy số lớn là 135 ; số bé là 21
Ta có bảng biến thiên như hình vẽ sau:
Giá trị nhỏ nhất của hàm số là f( b) nhưng giá trị lớn nhất có thể là f (a) hoặc f( e) Theo giả thiết ta có: f(a) + f( c)) = f( b) + f( d) nên f(a) - f( d)) = f( b) - f( c)< 0
Suy ra : f( a) < f( d) < f( e)
Vậy m a x [ a ; e ] f ( x ) = f ( e ) ; m i n [ a ; e ] f ( x ) = f ( b )
Chọn C.
Để tìm số tự nhiên lớn nhất thỏa mãn điều kiện trên, chúng ta cần tìm số tự nhiên lớn nhất mà khi chia cho cả 428 và 708 đều có số dư.
Để làm điều này, chúng ta có thể sử dụng thuật toán Euclid mở rộng. Bắt đầu với hai số 428 và 708, ta thực hiện các bước sau:
1. Tìm ước số chung lớn nhất (GCD) của 428 và 708 bằng cách sử dụng thuật toán Euclid:
- 708 = 428 * 1 + 280
- 428 = 280 * 1 + 148
- 280 = 148 * 1 + 132
- 148 = 132 * 1 + 16
- 132 = 16 * 8 + 4
- 16 = 4 * 4 + 0
GCD của 428 và 708 là 4.
2. Sau đó, chúng ta tìm bội số chung nhỏ nhất (LCM) của 428 và 708 bằng cách sử dụng công thức:
LCM = (428 * 708) / GCD
LCM = (428 * 708) / 4 = 151,704
Vậy số tự nhiên lớn nhất mà khi chia cho cả 428 và 708 đều có số dư là 151,704.