Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số có 2 chữ số cần tìm là \(\overline{ab}\left(0< a< 10;0< b< 10\right)\)
Vì 2 lần chữ số hàng chục lớn hơn 3 lần chữ số đơn vị là 2
=> PT : 2a - 3b = 2 (1)
Lại có khi viết ngược lại số mới nhỏ hơn số ban đầu 18 đơn vị
=> PT : \(\overline{ab}-\overline{ba}=18\)
<=> a - b = 2 (2)
Từ (1)(2) => HPT : \(\left\{{}\begin{matrix}2a-3b=2\\a-b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2\left(b+2\right)-3b=2\\a=b+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=2\\a=4\end{matrix}\right.\)
Vậy số cần tìm là 42
Gọi số cần tìm có dạng là \(\overline{ab}\)
2 lần chữ số hàng chục bé hơn chữ số hàng đơn vị là 1 nên b-2a=1
Nếu viết số đó theo thứ tự ngược lại thì được một số mới với tổng của số mới và số ban đầu là 143
=>\(\overline{ab}+\overline{ba}=143\)
=>11a+11b=143
=>a+b=13
Do đó, ta có hệ phương trình:
\(\left\{{}\begin{matrix}-2a+b=1\\a+b=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=-12\\a+b=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=9\end{matrix}\right.\)
Số tự nhiên 2 chữ số \(\overline{xy}=10x+y\)
Hai lần chữ số hàng chục hơn chữ số hàng đơn vị : \(2x-y=1\left(1\right)\)
Khi viết ngược lại :
\(10y+x-\left(10x+y\right)=27\)
\(\Rightarrow10y+x-10x-y=27\)
\(\Rightarrow-9x+9y=27\left(2\right)\)
\(\left(1\right),\left(2\right)\) ta có hệ phương trình
\(\left\{{}\begin{matrix}2x-y=1\\-9x+9y=27\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}18x-9y=9\\-18x+18y=54\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}9y=63\\2x-y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=7\\x=\dfrac{y+1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=7\end{matrix}\right.\)
Vậy số tự nhiên đó là 47
Gọi số cần tìm là \(\overline{ab}\)
Theo đề, ta co: 2a-b=3 và 10b+a-10a-b=9
=>2a-b=3 và -9a+9b=9
=>a=4 và b=5
Gọi số cần tìm là ¯ab¯
Theo đề, ta co: 2a-b=3 và 10b+a-10a-b=9
=>2a-b=3 và -9a+9b=9
=>a=4 và b=5
Gọi số tự nhiên đó là ab(ab>14). Theo đề bài ta có:
Chữ số hàng đơn vị lớn hơn chữ số hàng chục là 4 đơn vị nên ta có phương trình: \(-a+b=4\left(1\right)\)
Nếu đổi chỗ 2 chữ số cho nhau thì được số mới bằng \(\dfrac{17}{5}\) số cũ nên ta có phương trình: \(ba-ab=\dfrac{17}{5}\Leftrightarrow10b+a-10a-b=\dfrac{17}{5}\Leftrightarrow9b-9a=\dfrac{17}{5}\Leftrightarrow-45a+45b=17\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}-a+b=4\\-45a+45b=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-45a+45b=180\left(3\right)\\-45a+45b=17\left(2\right)\end{matrix}\right.\) Trừ từng vế của (3) cho (2) ta được:
\(\Rightarrow0a+0b=180-17=163\) Vô lí \(\Rightarrow\) Ko có a,b
Vậy ko tồn tại số tự nhiên thỏa mãn đề bài
Gọi số cần tìm là ab(ĐK:0<a,b≤9)
Theo đề ra ta có:b-2a=2(1)
Nếu thêm 1 chữ số bằng chữ số hàng chục vào bên phải số đã cho thì số mới là aba
Ta có:aba-ab=345
\(\Leftrightarrow\)101a+10b-10a-b=345
\(\Leftrightarrow\)91a+9b=345(2)
Từ (1)(2) ta có hệ phương trình\(\begin{cases} b-2a=2 \\ 91 a+9b=345 \end{cases}\)
\(\Leftrightarrow\)\(\begin{cases} a=3\\ b=8 \end{cases}\)
Vậy số tự nhiên cần tìm là 38
Lời giải:
Gọi số cần tìm là $\overline{ab}$. Điều kiện:.......
Theo bài ra ta có:
$a+2b=12(1)$
$\overline{a0b}-\overline{ab}=180$
$\Leftrightarrow 100a+b-(10a+b)=180$
$\Leftrightarrow 90a=180$
$\Leftrightarrow a=2(2)$
Từ $(1); (2)\Rightarrow b=5$
Vậy số cần tìm là $25$
Gọi số tự nhiên cần tìm có dạng là \(\overrightarrow{ab}\left(ĐK:0< a< 10;0\le a< 10\right)\)
Vì 2 lần chữ số hàng chục lớn hơn hàng đơn vị 2 đơn vị nên ta có phương trình: 2a-b=2(1)
Vì khi viết ngược số đó thì ta được số mới lớn hơn số cũ 18 đơn vị nên ta có phương trình: \(10b+a-\left(10a+b\right)=18\)
\(\Leftrightarrow10b+a-10a-b=18\)
\(\Leftrightarrow-9a+9b=18\)
hay a-b=-2(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}2a-b=2\\a-b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=a+2=4+2=6\end{matrix}\right.\)
Vậy: Số cần tìm là 46
Gọi số đó là \(\overline{ab}\left(a\inℕ^∗,a\le9;b\inℕ,b\le9\right)\)
Chữ số hàng chục hơn chữ số hàng đơn vị là 5 nên ta có phương trình \(a-b=5\)(1)
Ta có \(\overline{ab}=10a+b\), khi đảo ngược thứ tự của hai chữ số, ta được số mới là \(\overline{ba}=10b+a\)
Vì số mới bằng \(\frac{3}{8}\)số ban đầu nên ta có phương trình \(10b+a=\frac{3}{8}\left(10a+b\right)\)
\(\Leftrightarrow80b+8a=30a+3b\)\(\Leftrightarrow22a-77b=0\)\(\Leftrightarrow2a-7b=0\)(2)
Từ (1) và (2) ta có hệ phương trình \(\hept{\begin{cases}a-b=5\\2a-7b=0\end{cases}}\Leftrightarrow\hept{\begin{cases}7a-7b=35\\-2a+7b=0\end{cases}}\Leftrightarrow\hept{\begin{cases}5a=35\\a-b=5\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=7\\b=2\end{cases}}\)
Vậy số cần tìm là 72