Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overline{ab}=4\left(a+b\right)+3\Rightarrow10a+b=4a+4b+3\Rightarrow6a=3b+3\Rightarrow2a=b+1\)
Các số thoả hệ thức này chỉ có \(11,23,35,47,59\)
Thử lại điều kiện đầu tiên thì chỉ có \(35\) thoả đề.
Nếu lời giải chỉ có thế này thì phải là toán lớp 6 nha bạn.
Gọi số tự nhiên có 2 chữ số là ab (0<=a,b<=9;a khác 0; a,b là số tự nhiên)
Vì tổng 2 chữ số là 9 => a+b= 9 (1)
Khi lấy số đó chia số ngược lại thì thương là 2 dư 18
\(\Rightarrow\overline{ab}=2\cdot\overline{ba}+18\\ \Leftrightarrow10a+b=20b+2a+18\Leftrightarrow8a-19b=18\left(2\right)\)
Từ (1),(2) ta có hệ phương trình
\(\left\{{}\begin{matrix}a+b=9\\8a-19b=18\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=9-a\\8a-19\left(9-a\right)=18\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=7\\b=2\end{matrix}\right.\left(t.m\right)\)
Vậy số phải tìm là 72
Gọi số tự nhiên cần tìm là \(\overline{ab}\left(0< a< 10;0\le b\le9;a,b\in N\right)\)
Vì số đó bằng tổng bình phương các chữ số của nó cộng thêm 4
=> \(\overline{ab}=a^2+b^2+4\)
<=> a2 - 10a + b2 - b + 4 = 0 (1)
Lại có số đó lớn hơn 2 lần tích các chữ số của nó 5 đơn vị
=> \(\overline{ab}-2ab=5\)
<=> 10a + b - 2ab - 5 = 0 (2)
Từ (1)(2) => HPT : \(\left\{{}\begin{matrix}a^2-10a+b^2-b+4=0\\10a+b-2ab-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2-10a+b^2-b+4=0\\\left(1-2a\right)\left(b-5\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2-10a+b^2-b+4=0\\\left[{}\begin{matrix}a=\dfrac{1}{2}\left(\text{loại}\right)\\b=5\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2-10a+5^2-5+4=0\\b=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-4\right)\left(a-6\right)=0\\b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}a=4\\a=6\end{matrix}\right.\\b=5\end{matrix}\right.\)
Vậy 2 số cần tìm là 45 và 65