Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, a = BCNN(15;115) = 345
b, a – 1 ∈ BC(35;52) và 999 < a – 1 < 1999
Ta có BCNN(35;52) = 35.52 = 1820
Suy ra a – 1 ∈ {0;1820;3640;...}
Vì 999 < a – 1 < 1999 nên a – 1 = 1820
a = 1821
a) \(x⋮15;x⋮35;x⋮42\&250< x< 850\) (sửa dấu chia thành chia hết)
\(BCNN\left(15;35;42\right)=210\)
\(\Rightarrow x\in BC\left(15;35;42\right)=\left\{0;210;420;630;840;...\right\}\)
mà \(250< x< 850\)
\(\Rightarrow x\in\left\{420;630;840\right\}\)
b) x nhỏ nhất khác 0 thỏa mãn \(x⋮15;x⋮115\)
\(BCNN\left(15;115\right)=345\)
Vậy \(x\in\left\{345\right\}\) thỏa mãn đề bài
Đáp án là A
Vì a là số tự nhiên nhỏ nhất khác 0 thỏa mãn a ⋮ 18 và a ⋮ 40 nên a = BCNN (18, 40)
Ta có:
18 = 2. 3 2
40 = 2 3 .5
⇒ BCNN(18, 40) = 2 3 . 3 2 .5 = 360