Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Quy luật: Mỗi số hạng kể từ số thứ hai bằng số hạng đứng trước nó chia cho 2.
Vậy ba số hạng tiếp theo là: \(a_5=1;a_6=\dfrac{1}{2};a_7=\dfrac{1}{4}\)
b, Các số hạng của dãy số có dạng \(2^n\) với số mũ của số liền sau ít hơn số mũ của số liền trước 1 đơn vị.
Vậy ta có thể viết ba số hạng tiếp theo là: \(a_5=a^0;a_6=a^{-1};a_7=a^{-2}\)
1: Để ba số này lập thành cấp số cộng thì
\(\left[{}\begin{matrix}x-1=2\left(2x+2x-4\right)\\2x=2\left(x-1+2x-4\right)\\2x-4=2\left(x-1+2x\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}8x-8=x-1\\2x=6x-10\\2x-4=6x-2\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=1\\-4x=-10\\-4x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{5}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
2: 11;15;19
Người ta nói tần số của một số A trong một dãy số A1, A2, …,An là số lần xuất hiện của số A trong dãy A1,A2,…,An.
Ví dụ: Cho dãy số 2 3 4 5 1 3 3 4 3
Tần số của số 2 là 1. Tần số của số 3 là 4.
Cho một file văn bản có tên TANSO.INP và có cấu trúc như sau:
Dòng 1: Chứa số nguyên N dương (0<N<=10000)
N dòng tiếp theo: mỗi dòng chứa một số nguyên Ai (0<Ai<101), các số ghi cách nhau ít nhất một dấu cách trống.
Hãy viết chương trình đọc file trên và tìm tần số xuất hiện của các số trong N số đã cho. Yêu cầu chương trình chạy không quá 2 giây.
Kết quả xuất ra file văn bản TANSO.OUT gồm nhiều dòng. Mỗi dòng chứa 2 số Ai và Ki ghi cách nhau ít nhất một dấu cách trống. Trong đó Ai là số thuộc dãy, Ki là tần số của số Ai. Ai được xếp tăng dần từ đầu đến cuối file.
* Ta có:
u 2 = 2 u 1 = 2.2 = 4 = 2 2 u 3 = 2 u 2 = 2.4 = 8 = 2 3 u 4 = 2 u 3 = 2.8 = 16 = 2 4 u 5 = 2 u 4 = 2.16 = 32 = 2 5
Từ các số hạng đầu tiên, ta dự đoán số hạng tổng quát u n có dạng: u n = 2 n ∀ n ≥ 1 ∗
* Ta dùng phương pháp chứng minh quy nạp để chứng minh cộng thức (*) đúng.
Với n=1 ; có: u 1 = 2 1 = 2 (đúng). Vậy (*) đúng với n= 1
Giả sử (*) đúng với n= k , có nghĩa ta có: u k = 2 k (2)
Ta cần chứng minh (*) đúng với n = k+1. Có nghĩa là ta phải chứng minh: u k + 1 = 2 k + 1 .
Thật vậy từ hệ thức xác định dãy số và theo (2) ta có:
u k + 1 = 2 u k = 2 . 2 k = 2 k + 1
Vậy (*) đúng với n = k+1. Kết luận (*) đúng với mọi số nguyên dương n.
Chọn đáp án B.
Ta có:
u 2 = u 1 + 2 = 3 + 2 = 5.
u 3 = u 2 + 2 = 5 + 2 = 7.
u 4 = u 3 + 2 = 7 + 2 = 9.
u 5 = u 4 + 2 = 9 + 2 = 11.
Từ các số hạng đầu trên, ta dự đoán số hạng tổng quát u n có dạng:
u n = 2 n + 1 ∀ n ≥ 1 ∗
Ta dùng phương pháp chứng minh quy nạp để chứng minh công thức (*) đúng.
Với n =1 ; u 1 = 2 . 1 + 1 = 3 (đúng). Vậy (*) đúng với n =1
Giả sử (*) đúng với n =k. Có nghĩa ta có: u k = 2 k + 1 (2)
Ta cần chứng minh (*) đúng với n = k+1 - có nghĩa là ta phải chứng minh:
u k + 1 = 2(k+1)+1= 2k + 3
Thật vậy từ hệ thức xác định dãy số và theo (2) ta có:
u k + 1 = u k +2 = 2k +1 +2 = 2k + 3
Vậy (*) đúng khi n = k+1 .
Kết luận (*) đúng với mọi số nguyên dương n.
Đáp án B
Ta có
Quy luật: kể từ số thứ 2, mỗi số hạng đều bằng số hạng đứng ngay trước nó cộng với 4. Năm số hạng tiếp của dãy theo quy luật đó: 15; 19; 23; 27; 31
Bài 1: q=u2:u1=3:1=3
=> 3 số hạng tiếp theo: 81, 243, 729
Bài 2:
\(S_{11}=\dfrac{u_1.\left(q^{11}-1\right)}{q-1}=\dfrac{5.\left[\left(-2\right)^{11}-1\right]}{-2-1}\\ =\dfrac{5.\left(-2049\right)}{-3}=3415\)
a) Sắp xếp lại dãy số liệu theo thứ tự không giảm:
Tứ phân vị thứ nhất là: \(\frac{1}{2}\left( {{x_6} + {x_7}} \right) = \frac{1}{2}\left( {8,9 + 9,2} \right) = 9,05\)
Tứ phân vị thứ hai là: \(\frac{1}{2}\left( {{x_{13}} + {x_{14}}} \right) = \frac{1}{2}\left( {10,7 + 10,9} \right) = 10,8\)
Tứ phân vị thứ ba là: \(\frac{1}{2}\left( {{x_{18}} + {x_{19}}} \right) = \frac{1}{2}\left( {12,2 + 12,5} \right) = 12,35\)
b)
c) Tổng số nhân viên văn phòng là: \(n = 3 + 6 + 8 + 7 = 24\).
Gọi \({x_1};{x_2};...;{x_{24}}\) là lương tháng của các nhân viên văn phòng được xếp theo thứ tự không giảm.
Ta có:
\({x_1},{x_2},{x_3} \in \begin{array}{*{20}{l}}{\left[ {6;8} \right)}\end{array};{x_4},...,{x_9} \in \begin{array}{*{20}{l}}{\left[ {8;10} \right)}\end{array};{x_{10}},...,{x_{17}} \in \begin{array}{*{20}{l}}{\left[ {10;12} \right)}\end{array};{x_{18}},...,{x_{24}} \in \begin{array}{*{20}{l}}{\left[ {12;14} \right)}\end{array}\)
• Tứ phân vị thứ hai của dãy số liệu là: \(\frac{1}{2}\left( {{x_{13}} + {x_{14}}} \right)\)
Ta có: \(n = 24;{n_m} = 8;C = 3 + 6 = 9;{u_m} = 10;{u_{m + 1}} = 12\)
Do \({x_{13}},{x_{14}} \in \begin{array}{*{20}{l}}{\left[ {10;12} \right)}\end{array}\) nên tứ phân vị thứ hai của dãy số liệu là:
\({Q_2} = {u_m} + \frac{{\frac{n}{2} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 10 + \frac{{\frac{{24}}{2} - 9}}{8}.\left( {12 - 10} \right) = 10,75\)
• Tứ phân vị thứ nhất của dãy số liệu là: \(\frac{1}{2}\left( {{x_6} + {x_7}} \right)\).
Ta có: \(n = 24;{n_m} = 6;C = 3;{u_m} = 8;{u_{m + 1}} = 10\)
Do \({x_6},{x_7} \in \begin{array}{*{20}{l}}{\left[ {8;10} \right)}\end{array}\) nên tứ phân vị thứ nhất của dãy số liệu là:
\({Q_1} = {u_m} + \frac{{\frac{n}{4} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 8 + \frac{{\frac{{24}}{4} - 3}}{6}.\left( {10 - 8} \right) = 9\)
• Tứ phân vị thứ ba của dãy số liệu là: \(\frac{1}{2}\left( {{x_{18}} + {x_{19}}} \right)\).
Ta có: \(n = 24;{n_j} = 7;C = 3 + 6 + 8 = 17;{u_j} = 12;{u_{j + 1}} = 14\)
Do \({x_{18}},{x_{19}} \in \begin{array}{*{20}{l}}{\left[ {12;14} \right)}\end{array}\) nên tứ phân vị thứ ba của dãy số liệu là:
\({Q_3} = {u_j} + \frac{{\frac{{3n}}{4} - C}}{{{n_j}}}.\left( {{u_{j + 1}} - {u_j}} \right) = 12 + \frac{{\frac{{3.24}}{4} - 17}}{7}.\left( {14 - 12} \right) \approx 12,3\)
Câu 1:
Dãy đã cho có thể viết dưới dạng công thức truy hồi sau:
\(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=u_n+7n\end{matrix}\right.\)
\(u_{n+1}=u_n+7n\Leftrightarrow u_{n+1}-\dfrac{7}{2}\left(n+1\right)^2+\dfrac{7}{2}\left(n+1\right)=u_n-\dfrac{7}{2}n^2+\dfrac{7}{2}n\)
Đặt \(v_n=u_n-\dfrac{7}{2}n^2+\dfrac{7}{2}n\Rightarrow\left\{{}\begin{matrix}v_1=1\\v_{n+1}=v_n\end{matrix}\right.\)
\(\Rightarrow v_{n+1}=v_n=v_{n-1}=...=v_1=1\)
\(\Rightarrow u_n-\dfrac{7}{2}n^2+\dfrac{7}{2}n=1\)
\(\Leftrightarrow u_n=\dfrac{7}{2}n^2-\dfrac{7}{2}n+1\)
\(\dfrac{7}{2}n^2-\dfrac{7}{2}n+1=35351\)
\(\Leftrightarrow\dfrac{7}{2}n^2-\dfrac{7}{2}n-35350=0\)
\(\Rightarrow n=101\)
Vậy đó là số hạng thứ 101
2.
Do a;b;c lập thành 1 cấp số cộng
\(\Rightarrow a+c=2b\)
\(\Leftrightarrow2R.sinA+2R.sinC=2.2R.sinB\)
\(\Leftrightarrow sinA+sinC=2sinB\)
\(\Leftrightarrow2sin\dfrac{A+C}{2}.cos\dfrac{A-C}{2}=4sin\dfrac{B}{2}cos\dfrac{B}{2}\)
\(\Leftrightarrow cos\dfrac{B}{2}cos\dfrac{A-C}{2}=2sin\dfrac{B}{2}cos\dfrac{B}{2}\)
\(\Leftrightarrow cos\dfrac{A-C}{2}=2sin\dfrac{B}{2}=2cos\dfrac{A+C}{2}\)
\(\Leftrightarrow cos\left(\dfrac{A}{2}\right)cos\left(\dfrac{C}{2}\right)+sin\left(\dfrac{A}{2}\right)sin\left(\dfrac{C}{2}\right)=2cos\left(\dfrac{A}{2}\right)cos\left(\dfrac{C}{2}\right)-2sin\left(\dfrac{A}{2}\right)sin\left(\dfrac{C}{2}\right)\)
\(\Leftrightarrow cos\left(\dfrac{A}{2}\right).cos\left(\dfrac{C}{2}\right)=3sin\left(\dfrac{A}{2}\right).sin\left(\dfrac{C}{2}\right)\)
\(\Leftrightarrow cot\left(\dfrac{A}{2}\right).cot\left(\dfrac{C}{2}\right)=3\)