Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ong số học, bội số chung nhỏ nhất (hay còn gọi tắt là bội chung nhỏ nhất, viết tắt là BCNN, tiếng Anh: least common multiple hoặc lowest common multiple (LCM) hoặc smallest common multiple) của hai số nguyên a và b là số nguyên dương nhỏ nhất chia hết cho cả a và b.[1] Tức là nó có thể chia cho a và b mà không để lại số dư. Nếu a hoặc b là 0, thì không tồn tại số nguyên dương chia hết cho a và b, khi đó quy ước rằng LCM(a, b) là 0.
Định nghĩa trên đôi khi được tổng quát hoá cho hơn hai số nguyên dương: Bội chung nhỏ nhất của a1,..., an là số nguyên dương nhỏ nhất là bội số của a1,..., an.
3x - 4 = 3x + 3 - 7 = 3(x + 1) - 7
Để (3x - 4) ⋮ (x + 1) thì 7 ⋮ (x + 1)
⇒ x + 1 ∈ Ư(7) = {-7; -1; 1; 7}
⇒ x ∈ {-8; -2; 0; 6}
Ta có :3x - 4 ⋮ x+1
=> 3x - 4 - [3(x+1)] ⋮ x+1
=> 3x - 4 - (3x + 3) ⋮ x+1
=> 3x - 4 -3x - 3 ⋮ x+1
=> -7 ⋮ x+1
=> x + 1 = -7;-1;1;7 => x = -8;-2;0;6
3x - 4 = 3x + 3 - 7 = 3(x + 1) - 7
Để (3x - 4) ⋮ (x + 1) thì 7 ⋮ (x + 1)
⇒ x + 1 ∈ Ư(7) = {-7; -1; 1; 7}
⇒ x ∈ {-8; -2; 0; 6}
a ) x + 2 chia hết cho x - 3
( x - 3 ) + 5 ________ x - 3
Mà : x - 3 ________ x - 3
=> 5 ________ x - 3
a.Vì x,y là số nguyên dương
=> 1003 và 2y cũng là số nguyên dương
Vì 2008 là số chẵn
mà 2y cũng là số chẵn
=> 1003x là số chẵn
Vì 1003 là số lẻ
mà 1003x là số chẵn
=> x là số chẵn
=> x chia hết cho 2 (đpcm)
Vậy ta có đpcm
3x+12=2x-4
3x-2x=-4-12
1x=-16
x=-16:1 =>x=-16
14-3x=x+4
-3x-x=4-14
-4x=-10
x=-10:-4 =>x=-10/-4
2(x-2)+7=x-25
2x-4+7=x-25
2x-x=-25+4-7
2x=-28
x=-28;2 =>x=-14
|a+3|=-3
a+3=-3 hoặc a+3=3
a=-6 hoặc a=0
tìm x thì dễ rồi , mình làm tìm n nhá
a, ta có n+5=n-1+6
mà n-1 chia hết cho n-1
suy ra để n là số nguyên thì 6 chia hết cho n
suy ra n là ước của 6 ={
±1;
|
Hai bài toán rất hay và lạ! Xin cảm ơn bạn Tuấn Minh.
Và mình không hiểu người post cái bài dài dài kia (bạn Thành - sau mà đổi tên là không biết tên gì nốt) nói gì luôn. @@@.
1./ Tìm các số nguyên dương x;y;z sao cho: \(\hept{\begin{cases}x+3=2^y\left(1\right)\\3x+1=4^z\left(2\right)\end{cases}}\)
- Ta thấy y=0; 1 không phải là nghiệm của bài toán.
- Với y =2 thì x=1; z=1 là 1 nghiệm của bài toán.
- Với y>=3 thì:
- Từ (2) suy ra: \(3x=4^z-1=\left(4-1\right)\left(4^{z-1}+4^{z-2}+...+4^2+4+1\right)\)
\(\Leftrightarrow x=4^{z-1}+4^{z-2}+...+4^2+4+1\)
- Thay vào (1) ta có: \(\left(1\right)\Leftrightarrow4^{z-1}+4^{z-2}+...+4^2+4+1+3=2^y\)
\(\Leftrightarrow4^{z-1}+4^{z-2}+...+4^2+4+4=2^y\)
\(\Leftrightarrow8\cdot2\cdot4^{z-3}+8\cdot2\cdot4^{z-4}+...+8\cdot2\cdot4+8\cdot2+8=2^y\)
\(\Leftrightarrow8\cdot\left(2\cdot4^{z-3}+2\cdot4^{z-4}+...+2\cdot4+2+1\right)=8\cdot2^{y-3}\)
\(\Leftrightarrow\left(2\cdot4^{z-3}+2\cdot4^{z-4}+...+2\cdot4+2+1\right)=2^{y-3}\)
Ta thấy vế trái lẻ nên đạt được dấu bằng chỉ khi y=3; khi đó x=5 và z=2.
- Vậy bài toán có 2 bộ nghiệm nguyên là: \(\hept{\begin{cases}x=1;y=2;z=1\\x=5;y=3;z=2\end{cases}}\)
a) \(x^2+x+1=x\left(x+1\right)+1\)
Vì \(x\inℤ\)\(\Rightarrow x\left(x+1\right)⋮x+1\)\(\Rightarrow\)Để \(x^2+x+1⋮x+1\)thì \(1⋮x+1\)
\(\Rightarrow x+1\inƯ\left(1\right)=\left\{-1;1\right\}\)\(\Rightarrow x\in\left\{-2;0\right\}\)
Vậy \(x\in\left\{-2;0\right\}\)
b) \(3x-8=3x-12+4=3\left(x-4\right)+4\)
Vì \(3\left(x-4\right)⋮x-4\)\(\Rightarrow\)Để \(3x-8⋮x-4\)thì \(4⋮x-4\)
\(\Rightarrow x-4\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Lập bảng giá trị ta có:
\(x-4\) | \(-4\) | \(-2\) | \(-1\) | \(1\) | \(2\) | \(4\) |
\(x\) | \(0\) | \(2\) | \(3\) | \(5\) | \(6\) | \(8\) |
Vậy \(x\in\left\{0;2;3;5;6;8\right\}\)
3x + 4 chia hết cho x - 3
=> 3x - 9 + 13 chia hết cho x - 3
=> 3(x - 3) + 13 chia hết cho x - 3
=> 13 chia hết cho x - 3
=> x - 3 thuộc Ư(13)
=> x - 3 thuộc {-1;1-13;13}
=> x thuộc {2;4;-10;16}
Ta có \(3x+4⋮x-3\)
\(\Rightarrow3\left(x-3\right)+13⋮x-3\)
\(\Rightarrow13⋮x-3\)
\(\Rightarrow x-3\inƯ\left(13\right)=\left\{-13;-1;1;13\right\}\)
\(\Rightarrow x\in\left\{-10;2;4;16\right\}\) ( thỏa mãn x nguyên )
Vậy \(x\in\left\{-10;2;4;16\right\}\)