Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
Ta có \(\left(x-1\right)^2\ge0\forall x\Rightarrow2\left(x-1\right)^2\ge0\Rightarrow2\left(x-1\right)^2+3\ge3\)
Dấu"=" xảy ra <=> (x - 1)2 = 0
=> x - 1 = 0
=> x = 1
Vậy GTNN của A là 3 khi x = 1
Ta có \(\left(x-1\right)^2\ge0\forall x\Rightarrow2\left(x-1\right)^2\ge0\forall x\)
=> \(2\left(x-1\right)^2+3\ge0+3=3\)hay A>=3
Dấu "=" xảy ra <=> \(2\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
<=> x-1=0
<=> x=1
Vậy MinA=3 đạt được khi x=1
C nhỏ nhất <=> x-2 lớn nhất.
Nếu x-2 <0 => C<0.
Nếu x-2 >0 => C >0.
Mà C nhỏ nhất => C <0 => x-2<0 mà x-2 lớn nhất và là số nguyên
=> x-2 = -1
=> x = 1.
Vậy để C đạt giá trih nhỏ nhất thì x = 1 và khi đó C = -5.
Ta có \(P=\frac{7x-14}{x+5}=7+\frac{21}{x+5}\)
P có giá trị nguyên =>\(\frac{21}{x+5}nguyên\)
\(\Rightarrow x+5\inƯ\left(21\right)\)
\(\Rightarrow x=\left\{-26;-16;-12;-8;-6;-4;-2;2\right\}\)
A= \(\left(x+2\right)^2-13\)
Ta có \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2-13\ge-13\forall x\)
\(\Rightarrow A\ge-13\forall x\)
Dấu "=" xảy ra <=> \(\left(x+2\right)^2=0\)
\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
Vậy Min A = -13 \(\Leftrightarrow x=-2\)
@@ Học tốt
Chiyuki Fujito
Tái bút : Đây là cách trình bày của lp 7
TH1:nếu x-3<0 <=>A<0
TH2:nếu x-3>0<=>x-3 lớn nhất
Chọn TH1:x-3<0
Để A nhỏ nhất<=>x-3 lớn nhất
Mà x-3<0=>x-3=-1
=>x=2.Khi đó A=-1
Vậy x=2 thì A nhỏ nhất
\(A=\left(x+2\right)^2-13\)
Có \(\left(x+2\right)^2\ge0\)
\(\Rightarrow A\ge0+-13=-13\)
Vậy MInA = -13 <=> x = -2
B = (x2 - 16) + |y - 3| - 2
B = x2 - 16 - 2 + |y + 3|
B = x2 - 18 + |y + 3|
Ta có :
x2 \(\ge0\)
|y + 3| \(\ge0\)
=> x2 + |y + 3| \(\ge0\)
=> x2 - 16 + |y + 3| \(\le16\)
\(\Leftrightarrow\hept{\begin{cases}x^2=0\\\left|y+3\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}}\)
Ta có: \(x^2\ge0\Rightarrow x^2-16\ge-16\)
Mà \(\left|y-3\right|\ge0\)
\(\Rightarrow\left(x^2-16\right)+\left|y-3\right|\ge-16\)
\(\Rightarrow B=\left(x^2-16\right)+\left|y-3\right|-2\ge-18\)
Dấu " = " khi \(\hept{\begin{cases}x^2-16=0\\y-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=4;x=-4\\y=3\end{cases}}\)
Vậy MIN B = -18 khi x = -4 hoặc x = 4 và y = 3