K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2023

A = \(\dfrac{2x-1}{x+2}\) 

a, A là phân số ⇔ \(x\) + 2  # 0  ⇒ \(x\) # -2

b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2 

                                          ⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2

                                         ⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2

                                         ⇒ 5 ⋮ \(x\) + 2

                            ⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}

                            ⇒  \(x\)   \(\in\) { -7; -3; -1; 3}

c, A = \(\dfrac{2x-1}{x+2}\) 

  A = 2 - \(\dfrac{5}{x+2}\)

Với \(x\) \(\in\) Z và \(x\) < -3 ta có

                     \(x\) + 2 < - 3 + 2 = -1

              ⇒  \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\)  = -5  ⇒ - \(\dfrac{5}{x+2}\)<  5

              ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)

Với \(x\)  > -3;  \(x\) # - 2; \(x\in\)  Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1

            \(\dfrac{5}{x+2}\) > 0  ⇒  - \(\dfrac{5}{x+2}\)  < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)

Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)

Kết hợp (1); (2) và(3)  ta có A(max) = 7 ⇔ \(x\) = -3

 

                     

             

                                   

     

 

            

6 tháng 5 2020

Ta có \(\left(x-1\right)^2\ge0\forall x\Rightarrow2\left(x-1\right)^2\ge0\Rightarrow2\left(x-1\right)^2+3\ge3\)

Dấu"=" xảy ra <=> (x - 1)2 = 0

                        => x - 1 = 0

                        => x = 1

Vậy GTNN của A là 3 khi x = 1

6 tháng 5 2020

Ta có \(\left(x-1\right)^2\ge0\forall x\Rightarrow2\left(x-1\right)^2\ge0\forall x\)

=> \(2\left(x-1\right)^2+3\ge0+3=3\)hay A>=3

Dấu "="  xảy ra <=> \(2\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

<=> x-1=0

<=> x=1

Vậy MinA=3 đạt được khi x=1

16 tháng 3 2016

C nhỏ nhất <=> x-2 lớn nhất.

Nếu x-2 <0 => C<0.

Nếu x-2 >0 => C >0.

Mà C nhỏ nhất => C <0 => x-2<0 mà x-2 lớn nhất và là số nguyên

=> x-2 = -1

=> x = 1.

Vậy để C đạt giá trih nhỏ nhất thì x = 1 và khi đó C = -5.

Ta có \(P=\frac{7x-14}{x+5}=7+\frac{21}{x+5}\)

P có giá trị nguyên =>\(\frac{21}{x+5}nguyên\)

\(\Rightarrow x+5\inƯ\left(21\right)\)

\(\Rightarrow x=\left\{-26;-16;-12;-8;-6;-4;-2;2\right\}\)

7 tháng 5 2018

ahihi

13 tháng 2 2020

A= \(\left(x+2\right)^2-13\)

Ta có \(\left(x+2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+2\right)^2-13\ge-13\forall x\)

\(\Rightarrow A\ge-13\forall x\)

Dấu "=" xảy ra <=> \(\left(x+2\right)^2=0\)

\(\Leftrightarrow x+2=0\)

\(\Leftrightarrow x=-2\)

Vậy Min A = -13 \(\Leftrightarrow x=-2\)

@@ Học tốt 

Chiyuki Fujito

Tái bút : Đây là cách trình bày của lp 7

22 tháng 8 2021

TH1:nếu x-3<0 <=>A<0

TH2:nếu x-3>0<=>x-3 lớn nhất

Chọn TH1:x-3<0

Để A nhỏ nhất<=>x-3 lớn nhất

Mà x-3<0=>x-3=-1

=>x=2.Khi đó A=-1

Vậy x=2 thì A nhỏ nhất

12 tháng 1 2019

Đường parabol đạt giá trị thấp nhất khi và chỉ khi x= -2

12 tháng 1 2019

\(A=\left(x+2\right)^2-13\)

Có \(\left(x+2\right)^2\ge0\)

\(\Rightarrow A\ge0+-13=-13\)

Vậy MInA = -13 <=> x = -2

23 tháng 4 2017

B = (x2 - 16) + |y - 3| - 2 

B = x- 16 - 2 + |y + 3|

B = x2 - 18 + |y + 3|

Ta có :

x2 \(\ge0\)

|y + 3| \(\ge0\)

=> x2 + |y + 3| \(\ge0\)

=> x2 - 16 + |y + 3| \(\le16\)

\(\Leftrightarrow\hept{\begin{cases}x^2=0\\\left|y+3\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}}\)

23 tháng 4 2017

Ta có: \(x^2\ge0\Rightarrow x^2-16\ge-16\)

Mà \(\left|y-3\right|\ge0\)

\(\Rightarrow\left(x^2-16\right)+\left|y-3\right|\ge-16\)

\(\Rightarrow B=\left(x^2-16\right)+\left|y-3\right|-2\ge-18\)

Dấu " = " khi \(\hept{\begin{cases}x^2-16=0\\y-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=4;x=-4\\y=3\end{cases}}\)

Vậy MIN B = -18 khi x = -4 hoặc x = 4 và y = 3