K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để A nguyên thì 5x - 2 chia hết cho x-2

=> 5x - 10 + 8 chia hết cho x-2

Vì 5x - 10 chia hết cho x-2 => 8 chia hết cho x-2

=> x-2 thuộc Ư(8) 

x-2x
13
-11
24
-20
46
-4-2
810
-8-6
15 tháng 3 2018

Ta có A= 5 +( 8/x-2)

Để A nhận giá trị nguyên thì 8 phải chia hết cho x-2

Hay x-2 là Ư(8)

=> x-2=1 => x= 3 ( nhận)

x-2= -1=> x = 1 (nhận)

x-2=2=> x= 4 (nhận)

x-2=-2=> x= 0 (loại)

Tương tự với ±4 và ± 8

Vậy ......

17 tháng 9 2023

\(B=\dfrac{\left(x+4\right)\times x-2}{x+4}\)

\(B=x-\dfrac{2}{x+4}\)

Vì \(x\in z\), để \(B\in z\Leftrightarrow\dfrac{2}{x+4}\in z\)

                              \(\Leftrightarrow2⋮\left(x+4\right)\)

                              \(\Leftrightarrow x+4\inƯ\left(2\right)\)

Mà \(Ư\left(2\right)=\left(\pm1;\pm2\right)\)

Ta có bảng sau

\(\begin{matrix}x+4&1&-1&2&-2\\x&-3&-5&-2&-6\end{matrix}\)

Vậy \(x\in\left(-2;-3;-5;-6\right)\) thì \(B\in z\)

28 tháng 6 2019

1,

\(A=\frac{\sqrt{x-3}}{2}\) có giá trị nguyên nên \(\left(\sqrt{x}-3\right)⋮2\)

Suy ra x là số chính phương lẻ.

Vì x < 30 nên\(x\in\left\{1^2;3^2;5^2\right\}\) hay \(x\in\left\{1;9;25\right\}\)

28 tháng 6 2019

2,

Khi x là số nguyên thì \(\sqrt{x}\) hoặc là số nguyên (nếu x là số chính phương) hoặc là số vô tỉ (nếu x không phải số chính phương). Để \(B=\frac{5}{\sqrt{x-1}}\) là số nguyên thì \(\sqrt{x}\) không thể là số vô tỉ, do đó \(\sqrt{x}\) là số nguyên và \(\sqrt{x-1}\) phải là ước của 5 tức là √xx - 1 ∈ Ư(5). Để B có nghĩa ta phải có x \(\ge\)0 và x\(\ne\) 1. Ta có bảng sau:

\(\sqrt{x-1}\)1-15-5
\(\sqrt{x}\)206-4(loại)
\(x\)4036 

Vậy x\(\in\){4;0;36} (các giá trị này đều thoả mãn điều kiện x \(\ge\) 0 và x\(\ne\) 1).


 

30 tháng 8 2016

x+5 -x-1 = 4

x+1(ư)4 = -1;1;-2;2;-4;4

x = -2;0;-3;1;-5;3

18 tháng 11 2016

Trả lời hộ mik đi các bn, trả lời xong mik kik cho

25 tháng 2 2018

Khi x là số nguyên thì √x hoặc là số nguyên (nếu x là số chính phương) hoặc là số vô tỉ (nếu x không phải số chính phương).

Giải sách bài tập Toán 7 | Giải sbt Toán 7

là số nguyên thì √x không thể là số vô tỉ, do đó √x là số nguyên và √x - 1 phải là ước của 5 tức là √x - 1 ∈ Ư(5). Để B có nghĩa ta phải có x ≥ 0 và x ≠ 1. Ta có bảng sau:

√x - 1 1 -1 5 -5
√x 2 0 6 -4(loại)
x 4 0 36  

Vậy x∈{4; 0; 36} (các giá trị này đều thoả mãn điều kiện x ≥ 0 và x ≠ 1).

19 tháng 4 2018

\(a)\) Ta có : 

\(A=\frac{6x+9}{3x+2}=\frac{6x+4+5}{3x+2}=\frac{6x+4}{3x+2}+\frac{5}{3x+2}=\frac{2\left(3x+2\right)}{3x+2}+\frac{5}{3x+2}=2+\frac{5}{3x+2}\)

Để A có giá trị nguyên thì \(\frac{5}{3x+2}\) phải nguyên hay \(5\) chia hết cho \(3x+2\)\(\Rightarrow\)\(\left(3x+2\right)\inƯ\left(5\right)\)

Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)

Suy ra : 

\(3x+2\)\(1\)\(-1\)\(5\)\(-5\)
\(x\)\(\frac{-1}{3}\)\(-1\)\(1\)\(\frac{-7}{3}\)

Mà \(x\) là số nguyên nên \(x\in\left\{-1;1\right\}\)

Vậy \(x\in\left\{-1;1\right\}\)

Chúc bạn học tốt ~ 

19 tháng 4 2018

\(b)\) Ta có bất đẳng thức giá trị tuyệt đối như sau : 

\(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)

Dấu "=" xảy ra khi và chỉ khi \(xy\ge0\)

Áp dụng vào ta có : 

\(A=\left|x\right|+\left|8-x\right|\ge\left|x+8-x\right|=\left|8\right|=8\)

Dấu "=" xảy ra khi và chỉ khi \(x\left(8-x\right)\ge0\)

Trường hợp 1 : 

\(\hept{\begin{cases}x\ge0\\8-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\le8\end{cases}\Leftrightarrow}0\le x\le8}\)

Trường hợp 2 : 

\(\hept{\begin{cases}x\le0\\8-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le0\\x\ge8\end{cases}}}\) ( loại ) 

Vậy GTNN của \(A=8\) khi \(0\le x\le8\)

Chúc bạn học tốt ~ 

4 tháng 2 2016

30

ủng hộ mk nha

4 tháng 2 2016

mình mới học lớp 6

3 tháng 7 2018

a. Ta có:A = 2n-1 / n-3 = 2n-6+6-1 / n-3 = 2(n-3)+5 / n-3 = 2(n-3)/n-3+ 5/ n-3= 2+ (5/ n-3)
 Để A nguyên thì 2+5/n-3 nguyên => 5/n-3 nguyên hay 5 chia hết cho n-3
                                                      =>n-3 thuộc ước của 5
                                                      => n-3 thuộc {5, -5,1,-1}
                                                      => n thuộc { 8, -2, 4, 2}
b. Để A có GTLN thì 5/n-3 có GTLN=> n-3 là số nguyên dương nhỏ nhất=> n - 3 = 1 => n = 1+3 = 4
=> A = 2 + 5 = 7
vậy GTLN của A = 7 khi n = 4

2 tháng 7 2018

a) Để A có giá trị là số nguyên 

Thì (2n—1) chia hết cho (n—3)

==> [2(n—3)+4) chia hết cho (n—3)

 Vì (n—3) chia hết cho (n—3)

Nên (2+4) chia hết cho (n—3)

==> 6 chia hết cho (n—3)

==> (n—3) € Ư(6)

        (n—3) €{1;-1;2;-2;3;-3;6;-6}

 TH1: n—3=1

n=1+3

n=4

TH2: n—3=-1

n=-1+3

n=2

TH3: n—3=2

n=2+3

n=5

TH4: n—3=-2

n=-2+3

n=1

TH5:n—3=3

n=3+3

n=6

TH6: n—3=—3

n=-3+3

n=0

TH7: n—3=6

n=6+3

n=9

TH8: n—3=-6

n=-6+3

n=-3

Mình chỉ biết 1 câu thôi nha bạn