Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(P=\frac{2}{6-m}\left(m\ne6\right)\)
Để P có GTLN thì 6-m đạt giá trị nhỏ nhất
=> 6-m=1
=> m=5 (tmđk)
Vậy m=5 thì P đạt giá trị lớn nhất
\(A=5-\left|\frac{2}{3}-x\right|\)
Ta có: \(\left|\frac{2}{3}-x\right|\ge0\forall x\)
\(\Rightarrow5-\left|\frac{2}{3}-x\right|\le5\forall x\)
\(A=5\Leftrightarrow\left|\frac{2}{3}-x\right|=0\Leftrightarrow x=\frac{2}{3}\)
Vậy \(A=5\Leftrightarrow x=\frac{2}{3}\)
Ta có :
\(\frac{2x-5}{x}=\frac{2x}{x}-\frac{5}{x}=2-\frac{5}{x}\)
Để M có GTNN thì \(\frac{5}{x}\) phải có GTLN hay \(x>0\) và có GTNN
\(\Rightarrow\)\(x=1\)
\(\Rightarrow\)\(M=\frac{2x-5}{x}=\frac{2.1-5}{1}=\frac{-3}{1}=-3\)
Vậy \(M_{min}=-3\) khi \(x=1\)
\(B=9-\left|x-\frac{1}{2}\right|\)
Vì : \(-\left|x-\frac{1}{2}\right|\le9\)
=> \(9-\left|x-\frac{1}{2}\right|\le9\)
Vậy GTLN của B là 9 khi \(x=\frac{1}{2}\)
Ta có : \(\left|x-\frac{1}{2}\right|\ge0\Rightarrow-\left|x-\frac{1}{2}\right|\le0\Rightarrow9-\left|x-\frac{1}{2}\right|\le9\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x-\frac{1}{2}\right|=0\Leftrightarrow x=\frac{1}{2}\)
Vậy Max B = 9 <=> x = 1/2