Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 xem lại đề
bài 2 :
4n-5 chia hết cho n-1
=> 4n-4-1 chia hết cho n-1
=> 4(n-1)-1 chia hết cho n-1
=> 4(n-1) chia hết cho n-1 ; -1 chia hết cho n-1
=> n-1 thuộc Ư(-1)={-1,1}
=> n thuộc {0,2}
\(P=2019-\left(x+1\right)^{2018}\)
\(\Rightarrow P\in Z\Leftrightarrow2019-\left(x+1\right)^{2018}\in Z\)
\(\Rightarrow\left(x+1\right)^{2018}\in Z\)
\(\Rightarrow x+1\in Z\)
\(\Rightarrow x\in Z\)
\(\Rightarrow\)Tất cả các giá trị nguyên của x thì P sẽ là số nguyên
Ta có : M = 3 - 32 + 33 - 34 + .... + 32017 - 32018 + 32019
=> 3M = 32 - 33 + 34 - 35 + .... + 32018 - 32019 + 32020
Lấy 3M cộng M ta có :
3M + M = (3 - 32 + 33 - 34 + .... + 32017 - 32018 + 32019) + (32 - 33 + 34 - 35 + .... + 32018 - 32019 + 32020)
4M = 3 + 32020
Lại có 2x + 15 + 32020 = 4M
<=> 2x + 15 + 32020 = 3 + 32020
=> 2x = - 12
=> x = - 6
Vậy x = - 6
\(\Rightarrow\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x.\left(x+1\right)}=\frac{2018}{2019}\)
\(\Rightarrow\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x.\left(x+1\right)}=\frac{2018}{2019}\)
\(\Rightarrow2.\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2018}{2019}\)
\(\Rightarrow2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2018}{2019}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1009}{2019}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{4038}\)
\(\Rightarrow x+1=4038\)
\(\Rightarrow x=4037\)
Vậy \(x=4037\)
\(\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+...+\frac{2}{x.\left(x+1\right)}=\frac{2018}{2019}\)
\(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x.\left(x+1\right)}=\frac{2018}{2019}\)
\(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}+\frac{1}{x+1}\right)=\frac{2018}{2019}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{1009}{2019}\)
\(\frac{1}{x+1}=\frac{1}{4038}\)
\(x=4037\)
khó thế chắc bằng 0
sai thì thông cảm chứ mình cũng không hiểu cho lắm
|x-2018|=2019
TH1: x-2018= 2019
x = 2019+2018
x = 4037
TH2: x-2018= -2019
x = (-2019)+2018
x = -1
Vậy x\(\in\){4037;-1}