Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Để \(\frac{n-2018}{n-2019}\)là phân số thì \(\left(n\in Z;n\ne2019\right)\)
b, Để \(\frac{n-2018}{n-2019}\)là số nguyên thì \(\left(n-2018\right)⋮\left(n-2019\right)\)
\(\Leftrightarrow\left(n-2019\right)+1⋮\left(n-2019\right)\)
\(\Leftrightarrow1⋮\left(n-2019\right)\Leftrightarrow\left(n-2019\right)\inƯ\left(1\right)\)
\(\Leftrightarrow\left(n-2019\right)\in\left(1;-1\right)\Leftrightarrow n\in\left(2020;2018\right)\)
a) Để P là phân số thì \(n-2019\ne0\)
\(\Leftrightarrow n\ne0+2019\)
\(\Leftrightarrow n\ne2019\)
Vậy \(n\ne2019\) thì P là phân số.
b) Ta có: \(\frac{n-2018}{n-2019}=\frac{n-2019+1}{n-2019}=1+\frac{1}{n-2019}\)
Để \(P\inℤ\) thì \(\frac{1}{n-2019}\inℤ\)
\(\Rightarrow1⋮\left(n-2019\right)\)
\(\Leftrightarrow n-2019\inƯ\left(1\right)=\left\{-1;1\right\}\)
Lập bảng:
\(n-2019\) | \(-1\) | \(1\) |
\(n\) | \(2018\) | \(2020\) |
Vậy \(n\in\left\{2018;2020\right\}\) thì P nguyên.
bài 1 xem lại đề
bài 2 :
4n-5 chia hết cho n-1
=> 4n-4-1 chia hết cho n-1
=> 4(n-1)-1 chia hết cho n-1
=> 4(n-1) chia hết cho n-1 ; -1 chia hết cho n-1
=> n-1 thuộc Ư(-1)={-1,1}
=> n thuộc {0,2}
\(P=2019-\left(x+1\right)^{2018}\)
\(\Rightarrow P\in Z\Leftrightarrow2019-\left(x+1\right)^{2018}\in Z\)
\(\Rightarrow\left(x+1\right)^{2018}\in Z\)
\(\Rightarrow x+1\in Z\)
\(\Rightarrow x\in Z\)
\(\Rightarrow\)Tất cả các giá trị nguyên của x thì P sẽ là số nguyên