Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. x + 2x = -36
=> 3x = -36
=> x = -36 : 3
=> x = -12
2. (2x + 3) \(⋮\)(x - 2)
=> (2x - 2) + 5 \(⋮\)(x - 2)
=> 2(x - 2) + 5 \(⋮\)(x - 2)
=> 5 \(⋮\)(x - 2)
=> x - 2 \(\in\)Ư(5) = {-5;-1;1;5}
=> x \(\in\){-3;1;3;7}
3. Khi đó a . (-b) = -132
4. -2(3x + 2) = 12 + 22 + 32
=> -2(3x + 2) = 1 + 4 + 9
=> -2(3x + 2) = 14
=> 3x + 2 = 14 : (-2)
=> 3x+ 2 = -7
=> 3x = -7 - 2
=> 3x = -9
=> x = -9 : 3
=> x = -3
1/ \(x+2x=-36\)
\(\Rightarrow3x=-36\)
\(\Rightarrow x=-\frac{36}{3}\)
\(\Rightarrow x=-12\)
2/ \(\left(2x+3\right)⋮\left(x-2\right)\)
\(\Leftrightarrow\left(2x-4\right)+7⋮\left(x-2\right)\)
\(\Leftrightarrow2\left(x-2\right)+7⋮\left(x-2\right)\)
\(\Rightarrow7⋮\left(x-2\right)\)
\(\Rightarrow\left(x-2\right)\inƯ\left(7\right)\)
\(\Rightarrow x\inƯ\left(7-2\right)\)
\(\Rightarrow x\inƯ\left(5\right)\)
\(\Rightarrow x\in\left\{-5,1,5\right\}\)
Vậy x nhỏ nhất để \(\left(2x-3\right)⋮\left(x-2\right)\) là -5
3/ Vì \(a\cdot b=32\)
\(\Rightarrow-a\cdot b=-\left(a\cdot b\right)=-32\)
4/ \(-2\left(3x+2\right)=1^2+2^2+3^2\)
\(\Leftrightarrow-6x-4=1+4+9\)
\(\Leftrightarrow-6x=14+4\)
\(\Leftrightarrow-6x=18\)
\(\Leftrightarrow x=\frac{18}{-6}\)
\(\Rightarrow x=3\)
a) \(-2011-\left(200-2011\right)\)
\(=-2011-200+2011\)
\(=\left(-2011+2011\right)-200\)
\(=0-200\)
\(=-200\)
b) \(\left(-2\right)^2-\left(-2000\right)^0+\left(-1\right)^{2018}-\left|-20\right|\)
\(=4-1+1-20\)
\(=4-20\)
\(=-16\)
Bài 1 :
\(a)-2011-(200-2011)\)
\(=-2011-(200+2011)\)
\(=(-2011+2011)-200\)
\(=0-200=-200\)
\(b)(-2)^2-(-2000)^0+(-1)^{2018}-\left|-20\right|\)
\(=4-1+1-20\)
\(=4-20=-16\)
\(c)23\cdot18-23\cdot26+(-23)\cdot2\)
\(=23\cdot(18-26)+-(23\cdot2)\)
\(=23\cdot(-8)+(-46)\)
\(=-230\)
Bài 2 : Tìm số nguyên x biết :
\(a)3x-(-5)=20\)
\(\Rightarrow3x+5=20\)
\(\Rightarrow3x=20-5\)
\(\Rightarrow3x=15\Rightarrow x=5\)
\(b)3(x+2)=-4+(-2)^3\)
\(\Rightarrow3(x+2)=-4+(-8)\)
\(\Rightarrow3(x+2)=-12\)
\(\Rightarrow x+2=-12\div3\)
\(\Rightarrow x+2=-4\)
Tự tìm x câu b, và câu c,
Bài 3 tự làm
\(\left(x-3\right)\left(x-12\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=12\end{cases}}\)
\(\Rightarrow x\in\left\{3;12\right\}\)
\(\left(x^2-81\right)\left(x^2+9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-81=0\\x^2+9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=9\\x\in\varnothing\end{cases}}\Leftrightarrow x=9\)
\(\Rightarrow x=9\)
\(\left(x-4\right)\left(x+2\right)< 0\)
\(\Rightarrow\hept{\begin{cases}x-4\\x+2\end{cases}}\)trái dấu
\(TH1:\hept{\begin{cases}x-4>0\\x+2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>4\\x< -2\end{cases}}\Leftrightarrow x\in\varnothing\)
\(TH2:\hept{\begin{cases}x-4< 0\\x+2>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 4\\x>-2\end{cases}}\Leftrightarrow x\in\left\{-1;0;1;2;3\right\}\)
Vậy \(x\in\left\{-1;0;1;2;3\right\}\)
(x+1)2=4
(x+1)2=22
=> x+1=2
=>x=1
( x + 1 )2 = 4
( x + 1 )2 = 22
x + 1 = 2
x = 2 - 1
x = 1 ( x \(\in\)Z, thỏa mãn )
Vậy x = 1