Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
p=5
vì 5+6=11 là số nguyên tố
5+14=19 là số nguyên tố
5+12=17 là số nguyên tố
5+8=13 là số nguyên tố
tk nha
Mình Nghĩ Câu Này Cũng Dễ Chứ Đâu Khó Đâu
Mình Không Cố í xúc phạm đâu
Câu này là p = 5
Câu Này Dễ Nên Mình Không Giải Chi Tiết Nha Bạn
Lời giải:
Nếu $p$ là snt chia hết cho $5$ thì $p=5$. Khi đó $p+6. p+8, p+12, p+14$ đều là snt (thỏa mãn)
Nếu $p$ chia $5$ dư $1$. Đặt $p=5k+1$ với $k$ tự nhiên.
Khi đó $p+14=5k+15=5(k+3)\vdots 5$. mà $p+14>5$ nên không thể là snt (trái giả thiết - loại)
Nếu $p$ chia $5$ dư $2$. Đặt $p=5k+2$ với $k$ tự nhiên.
Khi đó $p+8=5k+10=5(k+2)\vdots 5$. mà $p+8>5$ nên không thể là snt (trái giả thiết - loại)
Nếu $p$ chia $5$ dư $3$. Đặt $p=5k+3$ với $k$ tự nhiên.
Khi đó $p+12=5k+15=5(k+3)\vdots 5$. mà $p+12>5$ nên không thể là snt (trái giả thiết - loại)
Nếu $p$ chia $5$ dư $4$. Đặt $p=5k+4$ với $k$ tự nhiên.
Khi đó $p+6=5k+10=5(k+2)\vdots 5$. mà $p+6>5$ nên không thể là snt (trái giả thiết - loại)
Vậy $p=5$ là đáp án duy nhất.
xét p = 2 =>p+10 là hợp số =>ko tm
xét p = 3=>p+10=13,p+14=17 tm
xét p>3 => p=3k+1,p=3k+2
- nếu p = 3k+1 thì p+14 = 3k+15 chia hết cho 3 mà 3k+1>3=>p=3k+1 ko tm
- nếu p=3k+2 thì p+10 = 3k+12 chia hết cho 3 mà 3k+2>3=>p=3k+2 ko tm
a) P+10 và P+14
+ Nếu P=2=> P+10=12; P+14=16(loại)
- Nếu P=3=> P+10=13; P+14=17(tm)
Nếu P>3=> P có dạng 3k;3k+1;3k+2
+Với P=3k mà P>3=> k>1=> P là hợp số ( loại)
+Với P=3k+1=> P+14=3k+1+14=3k+15 chia hết cho 3( loại)
+Với P=3k+2=> P+10=3k+2+10=3k+12 chia hết cho 3( loại)
Vậy với P=3 thì P+10 và P+14 là số nguyên tố.
Các phần còn lại bn làm tương tự
Thấy đúng thì tk nha, thanks nhìu ^_^
Thử `p=2`
`=>p+2=4(HS)`
`=>p=2`(loại).
Thử `p=3`
`=>p+12=15(HS)`
`=>p=3`(loại).
Thử `p=5`
`=>` \begin{cases}p+2=7(SNT)\\p+6=11(SNT)\\p+8=13(SNT)\\p+12=17(SNT)\\p+14=19(SNT)\\\end{cases}
`=>p=5(TM)`
Nếu `p>5` mà p là SNT
`=>p cancel{vdost} 5`
`=>p=5k+1,5k+2,5k+3,5k+4`
`+)p=5k+1=>p+14=5k+15 vdots 5`
`=>p=5k+1` (loại).
`+)p=5k+2=>p+8=5k+10 vdots 5`
`=>p=5k+2` (loại).
`+)p=5k+3=>p+12=5k+15 vdots 5`
`=>p=5k+3` (loại).
`+)p=5k+4=>p+6=5k+10 vdots 5`
`=>p=5k+4` (loại).
Vậy `p=5`
Với p là số nguyên tố ta xét các giá trị của p
• p=2=> p+2;p+6;p+8;p+12;p+14 đều là hợp số vì đều chia hết cho 2 (loại)
•p=3=> p+6=3+6=9 là hợp số (loại)
• p=5. Ta có
p+2=5+2=7
p+6=5+6=11
p+8=5+8=13
p+12=5+12=17
p+14=5+14=19
Các kết quả trên đều là số nguyên tố nên p=5 (chọn)
Với p khác 5 và p>5 => p=5k+1;5k+2;5k+3;5k+4 (k thuộc N*)
• p=5k+1=> p+14=5k+1+14=5k+15 là hợp số vì chia hết cho 5 (loại)
• p=5k+2=> p+8=5k+2+8=5k+10 là hợp số vì chia hết cho 5 (loại)
• p=5k+3=> p+2=5k+3+2=5k+5 là hợp số (loại)
• p=5k+4=> p+6=5k+4+6=5k+10 là hợp số (loại)
Vậy p=5
1. Vì p là số nguyên tố và p + 10 và p + 14 còng là số nguyên tố nên p > 2 .Mặt khỏc p có thể rơi vào một trong 3 khả năng hoặc p = 3k , p = 3k + 1, p = 3k – 1
- Với p = 3k + 1 thì
p + 14 = 3k + 15 = 3(k + 5 ) ⋮ 3
- Với p = 3k – 1 thì
p + 10 = 3k + 9 = 3 (k + 3) ⋮ 3
Vậy p = 3k . Do p là nguyên tố nên p = 3
2. Xét các trường hợp sau.
- Với p = 5 thì
p + 2 = 7
p + 6 = 11
p + 8 = 13
p + 12 = 17
p + 14 = 19
- Với p > 5 thì p = 5k +1, p = 5k + 2, p = 5k + 3, p = 5k +4
+ Nếu p= 5k +1 thì p + 14 = 5k + 15 ⋮ 5
+ Nếu p = 5k + 2 thì p + 8 = 5k + 10 ⋮ 5
+ Nếu p = 5k + 3 thì p + 12 = 5k + 15 ⋮ 5
+ Nếu p = 5k +4 thì p + 6 = 5k + 10 ⋮ 5
Suy ra nguyên tố cần Tìm là p = 5.
5
tick cho ngân ngân tick lại cho