K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2021

Bài 1:

Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố

2 + 4 = 6 không là số nguyên tố

Vậy p = 2 không thỏa mãn

Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố

3 + 4 = 7 là số nguyên tố

Vậy p = 3 thỏa mãn

Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2 

Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố

Vậy p = 3k + 1 không thỏa mãn

Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố

Vậy p = 3k + 2 không thỏa mãn

Vậy p = 3 thỏa mãn duy nhất.

26 tháng 2 2021

Bài 2:

Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3

p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3

Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3

Vì thế 4p + 1 phải chia hết cho 3

Mà p > 3 nên 4p + 1 > 3

=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.

14 tháng 4 2023

Câu 1:* Nếu p=2 => p+2=2+2=4 là hợp số (trái với đề bài)

* Nếu p=3 => p+2=3+2=5 là số nguyên tố 

                 => p+4=3+4=7 là số nguyên tố

=> p=3 thỏa mãn đề bài

* Nếu p là số nguyên tố; p>3 => p có dạng 3k+1 hoặc 3k+2 (k ∈ N*)

* Nếu p=3k+1 => p+2=3k+1+2=3k+3=3(k+1)

Vì 3 ⋮ 3 => 3(k+1) ⋮ 3 => p+2 ⋮ 3, mà p+2 là số nguyên tố lớn hơn 3 => p+2 là hợp số (trái với đề bài)

* Nếu p=3k+2 => p+4=3k+2+4=3k+6=3k+3.2=3(k+2)

Vì 3 ⋮ 3 => 3(k+2) ⋮ 3 => p+4 ⋮ 3, mà p+4 là số nguyên tố lớn hơn 3 => p+4 là hợp số (trái với đề bài)

Vậy p=3 thỏa mãn đề bài

 

 

a) Với p=1

Ta có

p+2=1+2=3 (nguyên tố,thỏa mãn)

p+4=1+4=5 (thỏa mãn )

Nhưng p lại là 1 số nguyên tố mà 1 ko phải số nguyên tố nên p=1 (loại)

Với p=2

Ta có:

p+2=2+2=4 (loại)

=>Trường hợp p=2 (loại)

Với p=3

Ta có 

p+2=3+2=5 (thỏa mãn)

p+4=3+4=7 (thỏa mãn)

=>Trường hợp p=3 (thỏa mãn)

Với p>3 thì p có dạng 3k+1 hoặc 3k+2

+,p=3k+1

thì p+2=3k+1+2=3k+3 chia hết cho 3 là hợp số( loại)

+,p=3k+2

thì p+4=3k+2+4=3k+6 chia hết cho 3 là hợp số( loại)

Vậy để p là số nguyên tố và p+2 và p+4 cũng là số nguyên tố thì p=3

Các câu khác bn lm tương tự nha

Mk ko chắc là lm đúng đâu nếu sai thì xl bn nhiều

9 tháng 1 2015

Bài 1 :+ Nếu p = 2 => p + 2 = 4 P (loại)
+ Nếu p = 3 => p + 2 = 5 P , p + 4 = 7 P
+ Nếu p > 3 => vì p nguyên tố nên p 3 => p = 3k + 1; p = 3k + 2(k N)
Trường hợp: p = 3k + 1 => p + 2 = 3k + 3 = 3(k + 1) 3
mà p > 3 nên p là hợp số
Trường hợp: p = 3k + 2 => p + 4 = 3k + 6 = 3(k + 2) 3
mà p > 3 nên p là hợp số
=>không có giá trị nguyên tố p lơn hơn 3 nào thoả mãn.
Vậy p = 3 là giá trị duy nhất cần tìm

9 tháng 1 2015

1) p=3

p=3

p=3

p=5

9 tháng 2 2021

Sai thì sửa,chửa thì đẻ

Do p+4 và p+8 là nguyên tố > 3 nên p+4 và p+8 đều lẻ

=> p lẻ

Với p = 3 thì p + 8 = 3 + 8 = 11; p + 4 = 3 + 4 = 7, đều là số nguyên tố (Chọn)

Với p > 3, do p nguyên tố nên p = 3.k + 1 hoặc p = 3.k + 2 (k ∈ N*)

+ Nếu p = 3.k + 1 thì p + 8 = 3.k + 1 + 8 = 3.k + 9 chia hết cho 3, là hợp số (Loại)

+ Nếu p = 3.k + 2 thì p + 4 = 3.k + 2 + 4 = 3.k + 6 chia hết cho 3, là hợp số, (Loại)

Vậy p = 3

9 tháng 2 2021

Với p = 2

=> p + 4 = 6

=> p = 1 loại

Với p = 3 

=> p + 4 = 7 

=> p + 8 = 11

=> p = 3 (tm)

Với p > 3

=> p = 3k + 1 hoặc p = 3k + 2 (k \(\inℕ^∗\))

Với p = 3k + 1 

=> p + 8 = 3k + 1 + 8 = 3k + 9 = 3(k + 3) \(⋮\)3

=> p = 3k + 1 loại

Với p = 3k + 2

=> p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) \(⋮\)3

=> p = 3k + 2 loại

Vậy p = 3 là giá trị cần tìm

15 tháng 12 2020

xét thử :

Nếu p = 2 => p+2 = 4 ( loại ) 

 Nếu p = 3 => p+4 = 7  và  => p+8 = 11 (thỏa mãn ) 

Nếu p là số nguyên tố >3 => p không chia hết cho 3 => \(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}}\) 

Nếu p có dạng p=3k+1 

=> p+8 = 3k+1 + 8 = 3k+9 \(⋮\) 3 ( loại )

Nếu p có dạng p=3k+2 

=> p+4 = 3k+2+4 = 3k+6 \(⋮\) ( loại )

Vây p=3