Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố
2 + 4 = 6 không là số nguyên tố
Vậy p = 2 không thỏa mãn
Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố
3 + 4 = 7 là số nguyên tố
Vậy p = 3 thỏa mãn
Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2
Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố
Vậy p = 3k + 1 không thỏa mãn
Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố
Vậy p = 3k + 2 không thỏa mãn
Vậy p = 3 thỏa mãn duy nhất.
Bài 2:
Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3
p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3
Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3
Vì thế 4p + 1 phải chia hết cho 3
Mà p > 3 nên 4p + 1 > 3
=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.
Bài 18:
Ta có:
\(2015^{2015}-2015^{2014}=2015^{2014}\cdot\left(2015-1\right)=2015^{2014}\cdot2014\)
\(2015^{2016}-2015^{2015}=2015^{2015}\cdot\left(2015-1\right)=2015^{2015}\cdot2014\)
Mà: \(2014< 2015\)
\(\Rightarrow2015^{2014}< 2015^{2015}\)
\(\Rightarrow2015^{2014}\cdot2014< 2015^{2015}\cdot2014\)
\(\Rightarrow2015^{2015}-2015^{2014}< 2015^{2016}-2015^{2015}\)
Vậy: ...
*Nếu p = 2 thì p+4 = 2+4 = 6 là hợp số (loại)
*Nếu p=3 thì p+4 = 3+ 4 = 7 là số nguyên tố
p+8 = 3+8 = 11 là số nguyên tố (chọn)
*Nếu p>3,p là số nguyên tố thì p = 3k+1 hoặc p=3k+2
+)Nếu p = 3k+1 thì p+8 = 3k+1+8 = 3k+9 là hợp số(loại)
+)Nếu p =3k+2 thì p+4 = 3k+2+4 = 3k+6 là hợp số (loại)
Vậy p=3
Do p thuộc N*(vì p là số NT) nên có 3 TH xảy ra:p chia hết cho 3, p chia cho 3 dư 1, p chia cho 3 dư 2
Nếu p chia 3 dư 1 suy ra p = 3k+1(k thuộc N*)suy ra p+8=3k+1+8=3k+9 chia hết cho 3
mà p>3suy ra p là hợp số suy ra loại (vì p là SNT)
Nếu p chia cho 3 dư 2 suy ra p=3k+2(k thuộc N*)suy ra p+4=3k+2+4=3k+6chia hết cho 3
mà p>3 suy ra p là hợp số suy ra loại (vì p là SNT)
Suy ra p chia hết cho 3 mà p là SNT suy ra p=3
Suy ra p+4=3+4=7,p+8=3+8=11(hợp lí)
Vậy p=3
Câu 1:* Nếu p=2 => p+2=2+2=4 là hợp số (trái với đề bài)
* Nếu p=3 => p+2=3+2=5 là số nguyên tố
=> p+4=3+4=7 là số nguyên tố
=> p=3 thỏa mãn đề bài
* Nếu p là số nguyên tố; p>3 => p có dạng 3k+1 hoặc 3k+2 (k ∈ N*)
* Nếu p=3k+1 => p+2=3k+1+2=3k+3=3(k+1)
Vì 3 ⋮ 3 => 3(k+1) ⋮ 3 => p+2 ⋮ 3, mà p+2 là số nguyên tố lớn hơn 3 => p+2 là hợp số (trái với đề bài)
* Nếu p=3k+2 => p+4=3k+2+4=3k+6=3k+3.2=3(k+2)
Vì 3 ⋮ 3 => 3(k+2) ⋮ 3 => p+4 ⋮ 3, mà p+4 là số nguyên tố lớn hơn 3 => p+4 là hợp số (trái với đề bài)
Vậy p=3 thỏa mãn đề bài
Vì p + 2 và p + 4 đều là số nguyên tố nên suy ra (nhớ dùng dấu suy ra) p lẻ.
Nếu p=3 suy ra p + 4 =7 ; p + 8 =11 đều là số nguyên tố
Nếu p>3 suy ra p ko chia hết cho 3 suy ra p chia 3 dư 1
+Nếu p chia 3 dư 1 suy ra p+2 chia hết cho 3 (loại)
+ Nếu p chia 3 dư 2 suy ra p+4 chia hết cho 3 (loại)
Suy ra p chỉ có thể là 3
a) Với p=1
Ta có
p+2=1+2=3 (nguyên tố,thỏa mãn)
p+4=1+4=5 (thỏa mãn )
Nhưng p lại là 1 số nguyên tố mà 1 ko phải số nguyên tố nên p=1 (loại)
Với p=2
Ta có:
p+2=2+2=4 (loại)
=>Trường hợp p=2 (loại)
Với p=3
Ta có
p+2=3+2=5 (thỏa mãn)
p+4=3+4=7 (thỏa mãn)
=>Trường hợp p=3 (thỏa mãn)
Với p>3 thì p có dạng 3k+1 hoặc 3k+2
+,p=3k+1
thì p+2=3k+1+2=3k+3 chia hết cho 3 là hợp số( loại)
+,p=3k+2
thì p+4=3k+2+4=3k+6 chia hết cho 3 là hợp số( loại)
Vậy để p là số nguyên tố và p+2 và p+4 cũng là số nguyên tố thì p=3
Các câu khác bn lm tương tự nha
Mk ko chắc là lm đúng đâu nếu sai thì xl bn nhiều
Bài 1 :+ Nếu p = 2 => p + 2 = 4 P (loại)
+ Nếu p = 3 => p + 2 = 5 P , p + 4 = 7 P
+ Nếu p > 3 => vì p nguyên tố nên p 3 => p = 3k + 1; p = 3k + 2(k N)
Trường hợp: p = 3k + 1 => p + 2 = 3k + 3 = 3(k + 1) 3
mà p > 3 nên p là hợp số
Trường hợp: p = 3k + 2 => p + 4 = 3k + 6 = 3(k + 2) 3
mà p > 3 nên p là hợp số
=>không có giá trị nguyên tố p lơn hơn 3 nào thoả mãn.
Vậy p = 3 là giá trị duy nhất cần tìm
xét thử :
Nếu p = 2 => p+2 = 4 ( loại )
Nếu p = 3 => p+4 = 7 và => p+8 = 11 (thỏa mãn )
Nếu p là số nguyên tố >3 => p không chia hết cho 3 => \(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}}\)
Nếu p có dạng p=3k+1
=> p+8 = 3k+1 + 8 = 3k+9 \(⋮\) 3 ( loại )
Nếu p có dạng p=3k+2
=> p+4 = 3k+2+4 = 3k+6 \(⋮\) ( loại )
Vây p=3