Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+Nếu p = 2 ⇒⇒ p + 2 = 4 (loại)
+Nếu p = 3 ⇒⇒ p + 6 = 9 (loại)
+Nếu p = 5 ⇒⇒ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)
+Nếu p > 5, ta có vì p là số nguyên tố nên ⇒⇒ p không chia hết cho 5 ⇒⇒ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4
-Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) ⋮⋮ 5 (loại)
-Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) ⋮⋮ 5 (loại)
-Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) ⋮⋮ 5 (loại)
-Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) ⋮⋮ 5 (loại)
⇒⇒ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn
Vậy p = 5 là giá trị cần tìm
Với p = 2 => p + 2 = 2 + 2 = 4 là hợp số (loại)
Với p = 3 => p + 6 = 3 + 6 = 9 là hợp số (loại)
Với p = 5 => p + 2 = 5 + 2 = 7 là SNT
=> p + 6 = 5 + 6 = 11 là SNT
=> p + 8 = 5 + 8 = 13 là SNT
=> p + 12 = 5 + 12 = 17 là SNT (thỏa mãn)
Với p > 5 => p có dạng 5k + 1; 5k + 2; 5k + 3 hoặc 5k + 4 (k ∈ N*)
Nếu p = 5k + 1 => .......................................................
Nếu p = 5k + 2 => p + 8 = 5k + 2 + 8 = 5k + 10 ⋮ 5 và > 5
=> p + 8 là hợp số (loại)
Nếu p = 5k + 3 => p + 2 = 5k + 3 + 2 = 5k + 5 ⋮ 5 và > 5
=> p + 2 là hợp số (loại)
Nếu p = 5k + 4 => p + 6 = 5k + 4 + 6 = 5k + 10 ⋮ 5 và > 5
=> p + 6 là hợp số (loại)
KL: Vậy p = 5
a) p=5
b)p=5
c)p=5
d)p=5
e)p=5
f)p=5
g)p=1
cac ban tick cho minh nha
+Nếu p = 2 ⇒ p + 2 = 4 (loại)
+Nếu p = 3 ⇒ p + 6 = 9 (loại)
+Nếu p = 5 ⇒ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)
+Nếu p > 5, ta có vì p là số nguyên tố nên ⇒ p không chia hết cho 5 ⇒ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4
-Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)
-Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) ⋮ 5 (loại)
-Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)
-Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) ⋮ 5 (loại)
⇒ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn
Vậy p = 5 là giá trị cần tìm
Do p cần tìm nguyên tố => p là 2 và p lẻ. Nên p sẽ có tận cùng là 1 , 3 , 5 , 7, 9. Xét:
Nếu p=2 ta có: p+6= 8 , p+12 = 14, p+14= 16 ( loại)
Nếu p có tận cùng là 1 => p+6 có tận cùng là 7 ( loại vì chia hết cho 7)
Nếu p có tận cũng là 3 => p+12 có tận cùng là 5 (loại)
Nếu p có tận cùng bằng 5 => p=5 thay vào các số trên thì ( nhận) và p>5 thì p chia hết cho 5 ( loại)
Nếu p có tận cùng bằng 7 => p+8 có tận cùng là 5( loại)
Nếu p có tận cùng là 9 => p+6 có tận cùng là 5 ( loại)
Vậy ta tìm được 1 số nguyền tố p thoả mãn đề bài là 5.
Lời giải:
Nếu $p$ chia hết cho $3$ thì $p=3$ (do $p$ nguyên tố). Khi đó $p+6=3+6=9$ không là số nguyên tố (loại)
Nếu $p$ chia $3$ dư $1$. Đặt $p=3k+1$. Khi đó:
$p+8=3k+9=3(k+3)\vdots 3$. Mà $p+8>3$ nên $p+8$ không là snt (trái với yêu cầu - loại)
Nếu $p$ chia $3$ dư $2$. Đặt $p=3k+2$. Khi đó:
$p+4=3k+6=3(k+2)\vdots 3$. Mà $p+4>3$ nên $p+4$ không là snt (trái với yêu cầu - loại)
Vậy không tồn tại $p$ thỏa mãn đề.
a) p=5
b) p=5
duyệt đi