Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\)Vì \(p\)là số nguyên tố
\(\Leftrightarrow\)\(p\in\left\{2;3;5;7;...\right\}\)
\(+)\)\(p=2\Leftrightarrow p+2=2+2=4\)( hợp số ) ( loại )
\(+)\)\(p=3\Leftrightarrow\hept{\begin{cases}p+2=3+2=5\\p+3=3+10=13\end{cases}}\)( thỏa mãn )
\(+)\)\(p>3\)mà \(p\)là số nguyên tố nên \(p\)có 2 dạng:
\(+)\)\(p=3k+1\left(k\in N\right)\Leftrightarrow p+2=3k+3⋮3\)( hợp số )
\(+)\)\(p=3k+2\Leftrightarrow p+10=3k+12⋮3\)( hợp số )
Vậy \(p=3\)\(\left(đpcm\right)\)
a)
+) Nếu p = 2 thì p + 10 = 2 + 10 = 12 → Hợp số ( loại)
+) Nếu p = 3 thì p + 10 = 3 + 10 = 13 ; p + 14 = 17 → Số nguyên tố ( thỏa mãn )
+) Nếu p > 3 thì p có dạng : 3k + 1 hoặc 3k + 2
- Với p = 3k + 1 thì p + 14 = 3k + 1+ 14 = 3k + 15 chia hết cho 3 → Hợp số ( loại )
- Với p = 3k + 2 thì p + 10 = 3k + 2 +10 = 3k + 12 chia hết cho 3 → Hợp số (loại)
Vậy p = 3
a)
- Nếu p = 2 => p + 10 = 2 + 10 = 12 là hợp số
=> p = 2 (loại)
- Nếu p = 3 => p + 10 = 3 + 10 = 13 là số nguyên tố
p + 14 = 3 + 14 = 17 là số nguyên tố
- Nếu p > 3 ; p là số nguyên tố thì p có dạng 3k + 1 và 3k + 2
+ p = 3k + 1 => p + 14 = 3k + 1 + 14 = 3k + 15 \(⋮\)3 là hợp số
=> p = 3k + 1 (loại)
+ p = 3k + 2 => p + 10 = 3k + 2 + 10 = 3k + 12 \(⋮\)3 là hợp số
=> p = 3k + 2 (loại)
Vập p = 3
b)
- Nếu p = 2 => p + 2 = 2 + 2 = 4 là hợp số
=> p = 2 (loại)
- Nếu p = 3 => p + 6 = 3 + 6 = 9 là hợp số
=> p = 3 (loại)
- Nếu p = 5 => p + 2 = 5 + 2 = 7 là số nguyên tố
p + 6 = 5 + 6 =11 là số nguyên tố
p + 8 = 5 + 8 = 13 là số nguyên tố
=> p = 5 (chọn)
- Nếu p > 5; p là số nguyên tố thì p có dạng là 5k - 1
p = 5k - 1 => p + 6 = 5k - 1 + 6 = 5k + 5 \(⋮\)5 là hợp số
=> p = 5k - 1 (loại)
Vập p = 5
Mình không biết phần b mình làm đúng không nữa!
Chúc bạn học tốt!
số đó là 3
3+10=13 là số nguyên tố
3+20=23 là số nguyên tố
hihi
nếu p = 2 thì p+10= 2+10=12 là hợp số(loại)
nếu p = 3 thì p + 10 = 3 + 10 = 13 là số nguyên tố( thỏa mãn)
p + 20 = 3 + 20 = 23 là số nguyên tố( thỏa mãn )
nếu p > 3 p có dạng 3k+1 hoặc 3k+2 ( k thuộc số tự nhiên khác 0 )
trường hợp 1: p có dạng 3k +1 thì P + 20 = 3k+1 +20=3k+21= 3(k+7)chia hết cho 3 là hợp số ( loại ) (1 )
th2 : p có dạng 3k +2 thì p+10 = 3k+2 +10= 3k+12= 3(k+4) chia hết cho 3 là hợp số ( loại) (2)
từ(1) và (2) => p > 3 thì p ko thỏa mãn
vậy P chỉ có thể = 3
mọi số tự nhiên đều viết được dưới 1 trong 3 dạng: 3k, 3k +1 hoặc 3k +2(với k là số tự nhiên)
+) nếu p = 3k vì p là số nguyên tố nên k = 1 => p = 3 => p+10 = 13 là số nguyên tố; p+14 = 17 là số nguyên tố (1)
+) nếu p = 3k +1 => p +14 = 3k+1+14 = 3k+15 = 3(k+5) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mẫn điều kiện đề bài) (2)
+) Nếu p=3k+2 => p+10 = 3k+2+10 = 3k+12 = 3(k+4) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mẫn điều kiện đề bài) (3)
từ (1), (2), (3) suy ra p=3 là giá trị cần tìm.
\(p=3=>p+2=5;p+10=13\)
p=3 so phai tim
voi p>3
p nguyen to => p=3k+1,3k+2
p+2 nguyen to=> p=3k+2 (neu p=3k+1=> p+2=3k+3 ko nguyen to)
p=3k+2=> p+10=3k+2+10=3k+12 =3(k+4) ko nguyen to
KL: p=3 duy nhat
Trường hợp p = 2 thì 2^p + p^2 = 8 là hợp số.
Trường hợp p = 3 thì 2^p + p^2 = 17 là số nguyên tố.
Trường hợp p > 3. Khi đó p không chia hết cho 3 và p là số lẻ. Suy ra p chia cho 3 hoặc dư 1 hoặc dư 2, do đó p^2 - 1 = (p - 1)(p + 1) chia hết cho 3. Lại vì p lẻ nên 2^p + 1 chia hết cho 3. Thành thử (2^p + 1) + (p^2 - 1) = 2^p + p^2 chia hết cho 3; suy ra 2^p + p^2 ắt hẳn là hợp số.
Vậy p = 3.
2.
Giả sử f(x) chia cho 1 - x^2 được thương là g(x) và dư là r(x). Vì 1 - x^2 có bậc là 2 nên r(x) có bậc tối đa là 1, suy ra r(x) = ax + b. Từ đó f(x) = (1 - x^2)g(x) + ax + b, suy ra f(1) = a + b và f(-1) = -a + b; hay a + b = 2014 và -a + b = 0, suy ra a = b = 1007.
Vậy r(x) = 1007x + 1007.
3.
Với a,b > 0, dùng bất đẳng thức CauChy thì có
(a + b)/4 >= can(ab)/2 (1),
2(a + b) + 1 >= 2can[2(a + b)].
Dùng bất đẳng thức Bunhiacopski thì có
can[2(a + b)] >= can(a) + can(b);
thành thử
2(a + b) + 1 >= 2[can(a) + can(b)] (2).
Vì các vế của (1) và (2) đều dương nên nhân chúng theo vế thì có
[(a + b)/4][2(a + b) + 1] >= can(ab)[can(a) + can(b)],
hay
(a + b)^2/2 + (a + b)/4 >= acan(b) + bcan(a).
Dấu bằng đạt được khi a = b = 1/4.
vì p là số nguyên tố nên ta xét :
-p=2=>p+8=10laf hợp số (loại)
-p=3=>p+8=11 .Đều là số nguyên tố (t/m)
p+10=13
-p>3=>p có dạng 3k+1;3k+2(k thuộc N) (vì p là số nguyên tố)
*nếu p=3k+1=>p+8=3k+1+8=3k+9 chia hết cho 3 và 3k+9>3=>p+8 là hợp số (loại)
*nếu p=3k+2=>p+10=3k+2+10=3k+12 chia hết cho 3 và 3k+2>3=>p+10 là hợp số (loại)
Vậy p=3
Khi p = 2 => p + 10 = 12 (loại)
Khi p = 3 => p + 10 = 13 (tm)
p + 14 = 17 (tm)
Khi p > 3 => đặt \(\orbr{\begin{cases}p=3k+1\\p=3q+2\end{cases}}\left(k;q\inℕ^∗\right)\)
Khi p = 3k + 1 => p + 14 = 3k + 15 = 3(k + 5) \(⋮\)3 (loại)
Khi p = 3q + 2 => p + 10 = 3q + 12 = 3(q + 4) \(⋮\)3 (loại)
Vậy p = 3 là giá trị cần tìm
Vì p là số nguyên tố nên p có dạng : \(3k;3k+1;3k+2\)
+) Nếu \(p=3k\Rightarrow p=3\) ( vì p là số nguyên tố )
Thay \(p=3\) lần lượt vào \(p+10\) và \(p+26\) ta được :
\(3+10=13\) (nhận)
\(3+26=29\) (nhận)
\(\Rightarrow p=3\) (thỏa mãn)
+) Nếu \(p=3k+1\)
Thay \(p=3k+1\) vào \(p+26\) ta được :
\(3k+1+26=3k+27=3\left(k+9\right)\)
Mà \(3\left(k+9\right)\) chia hết cho 3 \(\Rightarrow\) loại
+) Nếu \(p=3k+2\)
Thay \(p=3k+2\) vào \(p+10\) ta được:
\(3k+2+10=3k+12=3\left(k+4\right)\)
Mà \(3\left(k+4\right)\) chia hết cho 3 \(\Rightarrow\) loại
Vậy \(p=3\) .