K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2016

a) xét các số nguyên tố p như sau:

+) xét p=2 => p++2=4 ( là hợp số, loại)

+) xét p=3 => p+2=5 và p+4 =7 ( đều là số nguyên tố, chọn)

+) xét các số nguyên tố p lớn hơn 3. khi chia p cho 3 ta có 3 dạng: p=3k+1 hoặc p=3k+2. ( k\(\in\)N*)

- nếu p=3k+1 =>p+2=3k+1+2=3k+3 chia hết cho 3 va lớn hơn 3 

                    => p+2 là hợp số( trái với đề, loại)

- nếu p=3k+2 => p+4=3k+2+4=3k+6 chia hết cho 3 và lớn hơn 3.

                    => p+4 là hợp ( trái với đề, loại)

vậy p=3.

b) ta xét các số nguyên tố p như sau:

+) xét p=2 =>p+14=16 ( là hợp số, loại)

+) xét p=3=> p+1=4 ( loại)

vì các số nguyên tố lớn hơn 3 đều là số lẻ. => p+1 luôn luôn chẵn( không phải số nguyên tố) 

=> không tìm được số nguyên tố thỏa mãn.

vậy không tìm được số nguyên tố thỏa mãn.

k cho mình nha!

26 tháng 12 2016

a) P=3=> p+2=5; p+4=7 

=> p =3  nhận

b) P=16

a,b,c là số nguyên tố nên: a,b,c∈N∗và a,b,c≥2 Do đó,

ta có: c≥2^2+2^2>2 màc là số nguyên tố nên c phải là số lẻ:

Ta có: a^b+b^a+ba là số lẻ nên tồn tại a^b hoặc b^a chẵn mà a,b là số nguyên tố nên a=2 ∨ b=2 Xét 1 trường hợp, trường hợp còn lại

tương tự: b=2 và a phải là số lẻ nên a=2k+1 k∈N∗

Ta có: 2^a+a^2=c Nếu a=3 thì c=17 thỏa mãn. Nếu a>3 mà a là số nguyên tố nên a không chia hết cho 3 suy ra: a^2 chia 3 dư 1. Ta

có: 2^a=2^(k+1)=4^k.2−2+2=(4^k−1).2+2=BS(3)nên chia 3 dư 2 Từ đó, 2^a+a^2 ⋮3 nên c⋮3 suy ra c là hợp số, loại.

Vậy (a;b;c)=(2;3;17);(3;2;17)

HT

10 tháng 1 2022

thanks nhé

7 tháng 7 2019

TL:

a)Để  P+2;P+6; P+8 là số nguyên tố thì \(P=5\) 

hc tốt

7 tháng 7 2019

trình bày ra cho mình nha

a) Gọi \(d\inƯC\left(n+1;2n+3\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)

\(\Leftrightarrow2n+2-2n-3⋮d\)

\(\Leftrightarrow-1⋮d\)

\(\Leftrightarrow d\inƯ\left(-1\right)\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯC\left(n+1;2n+3\right)=\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(n+1;2n+3\right)=1\)

hay n+1 và 2n+3 là cặp số nguyên tố cùng nhau(đpcm)

22 tháng 11 2017

Chào bạn!

Ta sẽ chứng minh bài toán này theo phương pháp phản chứng

Giả sử \(\left(a;c\right)=m\)\(V\text{ới}\)\(m\in N\)\(m\ne1\)

Khi đó \(\hept{\begin{cases}a=k_1m\\c=k_2m\end{cases}}\)

Thay vào \(ab+cd=p\)ta có : \(k_1mb+k_2md=p\Leftrightarrow m\left(k_1b+k_2d\right)=p\)

Khi đó p là hợp số ( Mâu thuẫn với đề bài)

Vậy \(\left(a;c\right)=1\)(đpcm)

7 tháng 11 2021

khó quá

mình cũng đang hỏi câu đấy đây