Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Để A nguyên
=> 3n + 2 chia hết cho n - 1
=> 3n - 3 + 5 chia hết cho n - 1
Có 3n - 3 chia hết cho n - 1
=> 5 chia hết cho n - 1
=> n - 1 thuộc Ư(5)
=> n - 1 thuộc {1; -1; 5; -5}
=> n thuộc {2; 0; 6; -4}
Câu 2:
\(8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}\)
\(=2^{18}\left(2^3-1\right)=2^{18}.7\)
\(=2^{16}.2^2.7\)
\(=2^{16}.14\)chia hết cho 14
=> \(8^7-2^{18}\text{ chia hết cho }14\)(Đpcm)
Vì n + 2 ⋮ n - 3 <=> ( n - 3 ) + 5 ⋮ n - 3
Vì n - 3 ⋮ n - 3 . Để ( n - 3 ) + 5 ⋮ n - 3 <=> 5 ⋮ n - 3 => n - 3 ∈ Ư(5)
=> Ư(5) = { + 1 ; + 5 }
Ta có : n - 3 = - 1 => n = 2 ( TM )
n - 3 = 1 => n = 4 ( TM )
n - 3 = - 5 => n = - 2 ( TM )
n - 3 = 5 => n = 8 ( TM )
Vậy n = { + 2 ; 4 ; 8 }
a) \(n+18⋮n+1\)
\(\Rightarrow n+18-\left(n+1\right)⋮n+1\)
\(\Rightarrow n+18-n-1⋮n+1\)
\(\Rightarrow17⋮n+1\)
\(\Rightarrow17⋮n+1\)
\(\Rightarrow n+1\in\left\{-1;1;-17;17\right\}\)
\(\Rightarrow n\in\left\{-2;0;-18;16\right\}\left(n\in Z\right)\)
\(\frac{n^2+3n-13}{n+3}=\frac{n\left(n+3\right)-13}{n+3}=1-\frac{13}{n+3}\)
Để \(n^2+3n-13\) chia hết cho n+3 thì 13 phải chia hết cho n+3 hay n+3 là ước của 13
=> n+3={-13; -1; 1; 13} => n={-16; -4; -2; 10}
ta co n^2+3=n(n-1)+n+3=n(n-1)+(n-1)+4=(n-1)(n+1)+4
do do de n^2+3 chia het cho n-1 thi n-1 phai thuoc uoc cua 4
bang gia tri
do do n thuoc 0,2,-1,3 thi n^2+3 chia het n-1