\(3n^2+3n-101\)là lập phương của một số nguyên.

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2019

Đặt \(3n^3+3n-101=a^3\)

\(\Leftrightarrow3n\left(n+1\right)-101=a^3\)

Thấy \(3n\left(n+1\right)\) là số chẵn,\(101\) lẻ nên \(n^3\) là số lẻ

Đặt \(n=2k+1\)

\(\Leftrightarrow3\left(n^2+n\right)-101=8k^3+12k^2+6k+1\)

\(\Leftrightarrow3\left(n^2+n-34\right)=8k^3+12k^2+6k\)

Thấy VT chia hết cho 3;\(12k^2+6k\) chia hết cho 3 nên \(8k^3\) chia hết cho 3

Mà \(\left(8;3\right)=1\Leftrightarrow k⋮3\)

Đặt \(k=3m\) ta có:

\(\Leftrightarrow3\left(n^2+n-34\right)=8\cdot27m^3+12\cdot9m^2+6\cdot3m\)

\(\Leftrightarrow n^2+n-34=6\left(12m^3+6m^2+m\right)\)

Nếu n chia hết cho 3 thì VT chia 3 dư 2 trong khi đó VP chia hết cho 3 ( loại )

Nếu m chia 3 dư 1 thì VT chia 3 dư 1 trong khi đó VP chia hết cho 3 ( loại )

Nếu m chia 3 dư 2 thì VT chia 3 dư 2 trong khi đó VP chia hết cho 3  ( loại )

Vậy không tồn tại n nguyên thỏa mãn đề bài.

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0
19 tháng 1 2017

\(A=\frac{n^4-3n^3-n^2+3n+7}{n-3}=\frac{n^3\left(n-3\right)-\left(n^2-3n\right)+7}{n-3}=\frac{n^3\left(n-3\right)-n\left(n-3\right)+7}{n-3}\)

\(=\frac{\left(n-3\right)\left(n^3-n\right)+7}{n-3}=\frac{\left(n-3\right)\left(n^3-n\right)}{n-3}+\frac{7}{n-3}=n^3-n+\frac{7}{n-3}\)

Theo đề bài n là số nguyên => \(n^3-n\) là số nguyên

Để \(n^3-n+\frac{7}{n-3}\) có giá trị là 1 số nguyên <=> \(\frac{7}{n-3}\) có giá trị là 1 số nguyên

=> n - 3 là ước của 7 => Ư(7) = { - 7; - 1; 1; 7 }

Ta có bảng sau :

n - 3- 7- 1
n- 424  10

Mà x là số nguyên lớn nhất => x = 10

Vậy x = 10

19 tháng 1 2017

n-3={-7,-1,1,7)

n={-4,2,4,10}

2 tháng 12 2021

Answer:

Để mà \(3n^2-4n-2⋮n+1\left(n\ne-1\right)\)

\(\Rightarrow3n^2+3n-7n-7+5⋮n+1\)

\(\Rightarrow3n.\left(n+1\right)-7.\left(n+1\right)+5⋮n+1\)

Mà: \(\hept{\begin{cases}3n.\left(n+1\right)⋮n+1\\7.\left(n+1\right)⋮n+1\end{cases}}\)

\(\Rightarrow5⋮n+1\)

\(\Rightarrow n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Rightarrow n\in\left\{0;-2;4;-6\right\}\)

15 tháng 8 2018

help me !!! Giúp mk vs !!!