Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2
=> (n - 2) + 3 ⋮ n - 2
Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2
=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}
=> n ∈ {-1;1;3;5}
b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1
=> (4n - 2) + 7 ⋮ 2n - 1
=> 2(2n - 1) + 7 ⋮ 2n - 1
Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1
=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}
=> n ∈ {-3;0;1;4}
Gọi ước chung lớn nhất của n - 5 và 3n - 14 là d, ta có
3 ( n - 5) - ( 3n - 14)= -1 chia hết cho d
=> d = -1 hoặc 1, do đó n - 5 và 3n - 14 là nguyên tố cùng nhau
vậy n - 5/3n - 14 là phân số tối giản
A nguyên
=>2n+2+5 chia hết cho n+1
=>n+1 thuộc {1;-1;5;-5}
=>n thuộc {0;-2;4;-6}
Để \(\dfrac{2n+7}{n+1}\) có giá trị nguyên thì :
2n + 7 ⋮ n + 1
=> (2n + 2) + 5 ⋮ n + 1
=> 2(n + 1) ⋮ n + 1
Vì 2(n + 1) ⋮ n + 1 nên 5 ⋮ n + 1
=> n + 1 ∈ Ư(5) ∈ {-5;-1;1;5}
Với n + 1 = -5 => n = -6
Với n + 1 = -1 => n = -2
Với n + 1 = 1 => n = 0
Với n + 1 = 5 => n = 4
Vậy n ∈ {-6;-2;0;4}
a: Để A là phân số thì n-2<>0
=>n<>2
Khi n=-2 thì \(A=\dfrac{2\cdot\left(-2\right)+1}{-2-2}=\dfrac{-3}{-4}=\dfrac{3}{4}\)
b: Để A nguyên thì 2n+1 chia hết cho n-2
=>2n-4+5 chia hết cho n-2
=>\(n-2\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{3;1;7;-3\right\}\)