\(\left(1999n^2+1997n+30\right)⋮6n\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2017

????????????

26 tháng 5 2019

Biểu diễn \(P=\left(1998n^2+1998n\right)+\left(n^2-n+30\right)..\)

Vì \(\left(1998n^2+1998n\right)⋮6n;....P⋮6n\)\(\Leftrightarrow\left(n^2-n+30\right)⋮6n\)

Xét 2 trường hợp 

. Nếu \(n>0:\)

Ta có \(\left(n^2-n\right)⋮n\)\(\Rightarrow30⋮n\)(1)

Lại có \(30⋮6\Rightarrow\left(n^2-n\right)⋮6\)

Mà \(n^2-n=n\left(n-1\right)⋮2\Rightarrow n \left(n-1\right)⋮3\)

\(\Rightarrow n=3k\)hoặc \(n=3k+1\)

Vậy \(P⋮6n\Leftrightarrow n=3k\)hoặc \(n=3k+1\)và \(30⋮n\)(theo (1) )

\(\Rightarrow n\in\left\{1;3;10;30\right\}.\)

. Nếu \(n< 0\)Đặt \(n=-m\)với \(m>0\)

Làm tương tự, ta có \(m\in\left\{2;5;6;15\right\}\Rightarrow n\in\left\{-2;-5;-6;-15\right\}.\)

26 tháng 5 2019

Bạn vô câu hỏi tương tự và xem ở câu hỏi của Nguyễn Ngọc Minh nha

Mình vừa trả lời ở đó xong 

Hok tốt

26 tháng 5 2019

https://olm.vn/hoi-dap/detail/9073799447.html

tham khảo

3 tháng 6 2019

Câu 1 bạn dùng chia hết cho 13

Câu 2 bạn cộng cả 2 vế với z^4 rồi dùng chia 8

Câu 3 bạn đặt a^4n là x thì x sẽ chia 5 dư 1 và chia hết cho 4 hoăc chia 4 dư 1

Khi đó ta có x^2+3x-4=(x-1)(x+4)

đến đây thì dễ rồi

Câu 4 bạn xét p=3 p chia 3 dư 1 p chia 3 dư 2 là ra

Câu 6 bạn phân tích biểu thức của đề thành nhân tử có nhân tử x-2

Câu 5 mình nghĩ là kẹp giữa nhưng chưa ra

3 tháng 6 2019

Cảm ơn bạn Ninh Đức Huy.

8 tháng 8 2015

a/ 

\(A=\frac{n^2\left(n^2+2\right)+3n\left(n^2+2\right)-2}{n^2+2}=n^2+3n-\frac{2}{n^2+2}\)

A nguyên => \(\frac{2}{n^2+2}\) nguyên \(\Rightarrow n^2+2\in\text{Ư}\left(2\right)=\left\{-1;1;2;-2\right\}\)

Do \(n^2+2\ge2\) nên \(n^2+2=2\Leftrightarrow n=0\)

Vậy n = 0 thì A nguyên.

b/ Ta chứng minh \(B=n^5-n+2\) không là số chính phương với mọi n.

Xét \(M=n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

Nhận xét: n và n+1 là 2 số nguyên liên tiếp nên tích của chứng chia hết cho 2 => M⋮2

+Nếu n⋮5 thì M⋮5.
+Nếu n chia 5 dư 1 thì (n-1)⋮5 => M⋮5.
+Nếu n chia 5 dư 2 thì n2 chia 5 dư 4 => (n2+1)⋮5 => M⋮5.
+Nếu n chia 5 dư 3 thì n2 chia 5 dư 9 tức dư 4 => (n2+1)⋮5 => M⋮5
+Nếu n chia 5 dư 4 thì (n+1)⋮5 => M⋮5

Vậy M⋮5

Suy ra M⋮10 với mọi số tự nhiên n

=> M có tận cùng là 0.

=> B = M+2 có tận cùng là 2.

Mà số chính phương chỉ có tận cùng là 0; 1; 4; 6; 9

=> B không phải là số chính phương với mọi n.

 

7 tháng 4 2017

Xét các dạng của n trong phép chia cho 2 và 3

2k  , 2k+1

3p, 3p+1. 3p+2