\(\frac{-9}{n+4}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2017

a) Ta có : xy - x - y = 2

=> xy - x = 2 + y

=> x(y - 1) = y + 2

=> x = \(\frac{y+2}{y-1}\)

Mà x là số nguyên nên : \(\frac{y+2}{y-1}\)cũng là số nguyên 

Suy ra : y + 2 chia hết cho y - 1 

=> y - 1 + 3 chia hết cho y - 1 

=> 3 chia hết cho y - 1 

=> y - 1 thuộc Ư(3) = {-3;-1;1;3}

Ta có bảng : 

y - 1-3-113
y-2024
x = \(\frac{y+2}{y-1}\)0-242
12 tháng 1 2018

b) Để \(\frac{n+4}{n+1}\in Z\)

\(\Rightarrow n+4⋮n+1\)

\(\Rightarrow n+1+3⋮n+1\)

Mà \(n+1⋮n+1\)

\(\Rightarrow3⋮n+1\)

Lại có : \(n\in Z\Rightarrow n+1\in Z\)

\(\Rightarrow n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow n\in\left\{0;-2;2;-4\right\}^{\left(1\right)}\)

Để \(\frac{2}{n-1}\in Z\)

\(\Rightarrow2⋮n-1\)

Lại có: \(n\in Z\Rightarrow n-1\in Z\)

\(\Rightarrow n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

\(\Rightarrow n\in\left\{2;0;3;-1\right\}^{\left(2\right)}\)

Từ (1) và (2) suy ra:

Để \(\frac{n+4}{n+1}\)và \(\frac{2}{n-1}\)đồng thời có giá trị nguyên thì n = 0 ; 2 ( thỏa mãn n là số nguyên )

12 tháng 1 2018

a) Để \(\frac{n+2}{9}\in Z\)

\(\Rightarrow n+2⋮9\)

\(\Rightarrow n+2⋮3^{\left(1\right)}\)

Để \(\frac{n+3}{6}\in Z\)

\(\Rightarrow n+3⋮6\)

\(\Rightarrow n+3⋮3\)

\(\Rightarrow n⋮3^{\left(2\right)}\)

Từ (1) và (2) suy ra :

Ko tồn tại giá trị nào của n thỏa mãn đề bài

12 tháng 1 2018

Đề sai khỏi làm

12 tháng 1 2018

Để n+2/9 la so nguyen

=> n+2 chia het cho 9

=> n+2 chia het cho 3(1)

Để n+3/6 la so nguyen

=> n+3 chia het cho 6

=> n+3 chia het cho 3

=> n chia het cho 3 (2)

Tu 1 va 2 => k ton tai gia chi cua n thoa man de bai

13 tháng 7 2017

Để phân số A=\(\frac{4n+1}{n-1}\)thỏa mãn điều kiện thì:

4n+1 chia hết cho n-1

4n+1=4n-4+5

=4.(n-1)+5

Vì 4.(n-1) chia hết cho (n-1) nên 5 phải chia hết cho (n-1)

=> (n-1) thuộc Ư(5)=-1,1,-5,5

Nếu n-1=-1 =>n=0

        n-1=1 =>n=2

        n-1=-5 =>n=-4

        n-1=5 =>n=6

Vì n là số nguyên nên ta có n=0, n=2, n=6

Vậy n=0, n=2, n=6

2 tháng 12 2017

-4/8 nha các bạn

22 tháng 1

Bài 6: Tìm các số nguyên 𝑥 , 𝑦 , 𝑧 x,y,z Bạn đã cho một hệ phương trình phức tạp, nhưng tôi sẽ cố gắng làm rõ và giải quyết từng bước. Các phương trình là: 48 4 8 84 = 𝑥 − 10 𝑥 − 10 48 8 4 ​ 84=x−10 −10 x ​ − 10 𝑥 = − 7 𝑦 −10x=−7y 𝑦 − 7 = 𝑧 − 24 𝑧 − 24 y−7=z−24 −24 z ​ Chúng ta sẽ phân tích từng phương trình. Phương trình 1: 48 4 8 84 = 𝑥 − 10 𝑥 − 10 48 8 4 ​ 84=x−10 −10 x ​ Dường như có sự nhầm lẫn trong cách viết phương trình này, vì nó không rõ ràng. Tuy nhiên, tôi đoán bạn muốn nói 48 4 8 = 𝑥 − 10 × 𝑥 − 10 48 8 4 ​ =x−10× −10 x ​ . Để làm rõ, 48 4 8 48 8 4 ​ có thể viết là 48.5 48.5 (tức là 48 + 4 8 = 48.5 48+ 8 4 ​ =48.5). Phương trình trên có thể viết lại như sau: 48.5 = 𝑥 + 𝑥 48.5=x+x 48.5 = 2 𝑥 48.5=2x 𝑥 = 48.5 2 = 24.25 x= 2 48.5 ​ =24.25 Tuy nhiên, 𝑥 = 24.25 x=24.25 không phải là một số nguyên, nên có thể có sự nhầm lẫn trong cách viết phương trình. Phương trình 2: − 10 𝑥 = − 7 𝑦 −10x=−7y Ta có − 10 𝑥 = − 7 𝑦 −10x=−7y, hay là 10 𝑥 = 7 𝑦 10x=7y. Phương trình này cho thấy rằng 𝑥 x và 𝑦 y phải có một tỷ lệ đặc biệt sao cho khi nhân 𝑥 x với 10, kết quả phải là nhân 𝑦 y với 7. Do 𝑥 x và 𝑦 y là các số nguyên, ta có thể tìm các giá trị của 𝑥 x và 𝑦 y thỏa mãn điều kiện này. Phương trình 3: 𝑦 − 7 = 𝑧 − 24 𝑧 − 24 y−7=z−24 −24 z ​ Giống như phương trình đầu tiên, biểu thức này không hoàn toàn rõ ràng. Tuy nhiên, nếu giả sử bạn muốn viết 𝑦 − 7 = 𝑧 + 𝑧 24 y−7=z+ 24 z ​ , ta có thể tiếp tục phân tích. Bài 7: Biểu thức 𝐴 = 3 𝑛 − 2 𝑛 − 2 A= n−2 3n−2 ​ a) Tìm các số nguyên 𝑛 n để 𝐴 A là phân số: Biểu thức 𝐴 = 3 𝑛 − 2 𝑛 − 2 A= n−2 3n−2 ​ là một phân số nếu mẫu số khác 0. Do đó, 𝑛 − 2 ≠ 0 n−2  =0, tức là 𝑛 ≠ 2 n  =2. Vậy, 𝐴 A sẽ là phân số với tất cả các số nguyên 𝑛 n ngoại trừ 𝑛 = 2 n=2. b) Tìm các số nguyên 𝑛 n để 𝐴 A là số nguyên: Để 𝐴 = 3 𝑛 − 2 𝑛 − 2 A= n−2 3n−2 ​ là một số nguyên, mẫu số phải chia hết cho tử số. Ta xét phép chia 3 𝑛 − 2 𝑛 − 2 n−2 3n−2 ​ . Ta thực hiện phép chia polynom: 3 𝑛 − 2 𝑛 − 2 = 3 + 4 𝑛 − 2 n−2 3n−2 ​ =3+ n−2 4 ​ Để 𝐴 A là một số nguyên, phần dư 4 𝑛 − 2 n−2 4 ​ phải là một số nguyên, nghĩa là 𝑛 − 2 n−2 phải là một ước của 4. Các ước của 4 là: ± 1 , ± 2 , ± 4 ±1,±2,±4. Do đó, 𝑛 − 2 n−2 có thể là 1 , − 1 , 2 , − 2 , 4 , − 4 1,−1,2,−2,4,−4. Từ đó, ta có: 𝑛 − 2 = 1 ⇒ 𝑛 = 3 n−2=1⇒n=3 𝑛 − 2 = − 1 ⇒ 𝑛 = 1 n−2=−1⇒n=1 𝑛 − 2 = 2 ⇒ 𝑛 = 4 n−2=2⇒n=4 𝑛 − 2 = − 2 ⇒ 𝑛 = 0 n−2=−2⇒n=0 𝑛 − 2 = 4 ⇒ 𝑛 = 6 n−2=4⇒n=6 𝑛 − 2 = − 4 ⇒ 𝑛 = − 2 n−2=−4⇒n=−2 Vậy các giá trị của 𝑛 n để 𝐴 A là một số nguyên là: 𝑛 = − 2 , 0 , 1 , 3 , 4 , 6 n=−2,0,1,3,4,6. Hy vọng tôi đã giúp bạn hiểu rõ hơn về các bài toán này! Nếu cần giải thích thêm hoặc có thêm câu hỏi, bạn có thể hỏi tiếp.


15 tháng 7 2016

a) \(A=\frac{3n+9}{n-4}=\frac{3n-12}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\) nguyê

<=> n - 4 \(\in\) Ư(21) = {-21; -7; -3; -1; 1; 3; 7; 21}

<=> n \(\in\) {-17; -3; 1; 3; 5; 7; 11; 25}

Bạn tự tính giá trị với mỗi n

b) Tương tự

15 tháng 7 2016

Thank you các bạn nha !

10 tháng 7 2017

Phân số nguyên 

<=> n + 4 = n + 2 + 2 chia hết cho n + 2

<=> 2 chia hết cho n + 2

=> n + 2 thuộc Ư(2) = {1 ; -1 ; 2 ; -2}

Còn lại , tự lập bảng xét giá trị của n 

10 tháng 7 2017

Ta có :  \(\frac{n+4}{n+2}=\frac{n+2+2}{n+2}=\frac{n+2}{n+2}+\frac{2}{n+2}=1+\frac{2}{n+2}\)

Để \(\frac{n+4}{n+2}\in Z\) thì 2 chia hết cho n + 2

=> n + 2 thuộc Ư(2) = {-2;-1;1;2}

Ta có bảng : 

n + 2-2-112
n-4-3-10