K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2017

Ta có 3n+ 2 chia hết cho 2n + 1 khi và chỉ khi 2.(3n+2) = 6n + 4 = 3.(2n+ 1) + 1 chia hết cho 2 n+1

<=> 1 chia hết cho 2n+1

Sau đó bạn tìm n 

2 tháng 2 2017

3n + 2 chia hết cho 2n + 1

=> 2 (3n + 2) chia hết cho 2n + 1

     3 (2n + 1) chia hết cho 2n + 1

=> 6n + 4 chia hết cho 2n + 1

     6n + 3 chia hết cho 2n + 1

=> 6n + 4 - (6n + 3) chia hết cho 2n + 1

     6n + 4 - 6n - 3 chia hết cho 2n + 1

               1 chia hết cho 2n + 1

=> 2n + 1 thuộc Ư (1) = {1 ; -1}

  • 2n + 1 = 1 => 2n = 1 - 1 = 0 => n = 0 : 2 = 0
  • 2n + 1 = -1 => 2n = (-1) - 1 = -2 => n = (-2) : 2 = -1

Vậy n thuộc {0 ; -1}

9 tháng 1 2018

3n+2 chia hết cho n-1

ta có: 3n+2=3n-3+5=3(n-1)+5

Vì n-1 chia hết cho n-1

suy ra 5 chia hết cho n-1

suy ra n-1 thuộc bội của 5 =1,-1,5,-5

Rồi bạn tự giải ra từng trường hợp nhé !

a/ \(n+2⋮n+1\)

\(\left(n+1\right)+1⋮n+1\)

Vì \(n+1⋮n+1\)

\(\Rightarrow1⋮n+1\)

\(\Rightarrow n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Rightarrow\orbr{\begin{cases}n+1=1\\n+1=-1\end{cases}\Rightarrow\orbr{\begin{cases}n=0\\n=-2\end{cases}}}\)

b/ \(3n+2⋮n-1\)

\(3n-3+5⋮n-1\)

\(3\left(n-1\right)+5⋮n-1\)

Vì \(3\left(n-1\right)⋮n-1\)

\(\Rightarrow5⋮n-1\)

\(\Rightarrow n-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\orbr{\begin{cases}n-1=1\\n-1=-1\end{cases}\Rightarrow\orbr{\begin{cases}n=2\\n=0\end{cases}}}\)

\(\orbr{\begin{cases}n-1=5\\n-1=-5\end{cases}\Rightarrow\orbr{\begin{cases}n=6\\n=-4\end{cases}}}\)

Vậy \(n\in\left\{2;0;6;-4\right\}\)

c/ 2n - 1 là ước của 3n + 2

\(\Rightarrow3n+2⋮2n-1\)

\(\Rightarrow6n+4⋮2n-1\)

\(\Rightarrow6n-3+7⋮2n-1\)

\(\Rightarrow3\left(2n-1\right)+7⋮2n-1\)

Vì \(3\left(2n-1\right)⋮2n-1\)

\(\Rightarrow7⋮2n-1\)

\(\Rightarrow2n-1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

\(\orbr{\begin{cases}2n-1=1\\2n-1=-1\end{cases}\Rightarrow\orbr{\begin{cases}2n=2\\2n=0\end{cases}\Rightarrow}\orbr{\begin{cases}n=1\\n=0\end{cases}}}\)

\(\orbr{\begin{cases}2n-1=7\\2n-1=-7\end{cases}\Rightarrow\orbr{\begin{cases}2n=8\\2n=-6\end{cases}\Rightarrow}\orbr{\begin{cases}n=4\\n=-3\end{cases}}}\)

Vậy \(n\in\left\{1;0;4;-3\right\}\)

hok tốt!!

9 tháng 3 2020

a)  \(n+7⋮n+2\)

=) \(\left[n+7-\left(n+2\right)\right]⋮n+2\)

=) \(n+7-n-2⋮n+2\)

=) \(5⋮n+2\)

=) \(n+2\inƯ\left(5\right)\)\(\left\{+-1;+-5\right\}\)

=) \(n\in\left\{-3;-1;3;-7\right\}\)

đăng kí kênh V-I-S hộ mình nha !

2 tháng 2 2017

2n2 + 11 chia hết cho 3n + 1

3.(2n2 + 11) chia hết cho 3n + 1

6n2 + 33 chia hết cho 3n + 1

2n.3n + 33 chia hết cho 3n + 1

2n.3n + 2n - 2n + 33 chia hết cho 3n + 1

2n.(3n + 1) - 2n + 33 chia hết cho 3n + 1

2n + 33 chia hết cho 3n + 1

3.(2n + 33) chia hết cho 3n + 1

6n + 99 chia hết cho 3n + 1

6n + 2 + 97 chia hết cho 3n + 1

2.(3n + 1) + 97 chia hết cho 3n + 1

=> 97 chia hết cho 3n + 1

=> 3n + 1 thuộc Ư(97) = {1 ; -1 ; 97 ; -97}

Ta có bảng sau :

3n + 11-197-97
n0-2/332-98/3

Vậy n = {0 ; 32}

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

Lời giải:
$2n+3\vdots 3n+2$

$\Rightarrow 3(2n+3)\vdots 3n+2$

$\Rightarrow 6n+9\vdots 3n+2$
$\Rightarrow 2(3n+2)+5\vdots 3n+2$

$\Rightarrow 5\vdots 3n+2$
$\Rightarrow 3n+2\in \left\{1; -1; 5; -5\right\}$

$\Rightarrow n\in \left\{\frac{-1}{3}; -1; 1; \frac{-7}{3}\right\}$

Do $n$ nguyên nên $n\in \left\{-1;1\right\}$

Thử lại thấy thỏa mãn.

11 tháng 2 2016

a ) 3n + 25 ⋮ n - 4 <=> 3.( n - 4 ) + 37 ⋮ n - 4

Vì n - 4 ⋮ n - 4 . Để 3.( n - 4 ) + 37 ⋮ n - 4 thì 37 ⋮ n - 4 => n - 4 ∈ Ư ( 37 ) = { + 1 ; + 37 }

Ta có : n - 4 = 1 => n = 1 + 4 = 5 ( nhận )

           n - 4 = - 1 => n = - 1 + 4 = 3 ( nhận )

           n - 4 = 37 => n = 37 + 4 = 41 ( nhận )

           n - 4 = - 37 => n = - 37 + 4 = - 33 ( nhận )

Vậy n ∈ { - 33 ; 3 ; 5 ; 41 }

Câu b tương tự