K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2019

\(m-1⋮2m+1\)

\(\Rightarrow2m-2⋮2m+1\)

\(\Rightarrow2m+1-3⋮2m+1\)

\(\Rightarrow3⋮2m+1\)

tu lam

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

\(=3^n\cdot10-2^n\cdot5\)

\(=3^n\cdot10-2^{n-1}\cdot5\cdot2\)

\(=3^n\cdot10-2^{n-1}\cdot10\)

\(=10\left(3^n-2^{n-1}\right)⋮10\)

4 tháng 2 2019

cảm ơn bạn rất nhiều 

26 tháng 1 2017

m - 1 ⋮ 2m - 1

<=> 2(m - 1) ⋮ 2m - 1

<=> 2m - 2 ⋮ 2m - 1

<=> (2m - 1) - 1 ⋮ 2m - 1

=> 1 ⋮ 2m - 1 Hay 2m - 1 là ước của 1

Ư(1) = { ± 1 }

Ta có : 2m - 1 = 1 <=> 2m = 2 => m = 1

           2m - 1 = - 1 <=> 2m = 0 => m = 0

Vạy m = { 0; 1 }

28 tháng 3 2016

Minh ko bik lam ban oi 

vi minh la thang bgoc

123344 

ngoc ngoc

21 tháng 7 2021

a) Tách biểu thức \(\frac{m-1}{2m+1}\)ra :

\(\frac{2\left(m-1\right)}{2\left(2m+1\right)}\)\(\frac{2m+1-3}{2\left(2m+1\right)}\)\(\frac{1}{2}-\frac{3}{2\left(2m+1\right)}\)

Vậy để biểu thức m-1 chia hết cho 2m+1 

<=> Biểu thức \(\frac{3}{2\left(2m+1\right)}\)\(\frac{x}{2}\) với x là số nguyên

Nhân chéo biểu thức trên , ta được : \(6\) = \(2x\left(2m+1\right)\) 

\(x=\frac{6}{4m+2}\) Vậy để x là số nguyên thì 6 phải chia hết cho 4m+2

\(4m+2\)thuộc (-6 , -3, -2, -1, 1, 2 , 3 , 6)

    Để thỏa mãn điều kiện trên thì m có nghiệm là (-2, -1, 0, 1)

 Vậy kết luận nếu m = -2 , m= - 1, m= 0 , m = 1 thì biểu thức m-1 chia hết cho 2m+1

b) Để \(\left|3m-1\right|< 3\)

<=> \(\orbr{\begin{cases}3m-1< 3\\3m-1>-3\end{cases}}\)  <=> \(\orbr{\begin{cases}3m< 4\\3m>-2\end{cases}}\) <=> \(\frac{-2}{3}< m< \frac{4}{3}\)

Để số nguyên m thỏa mãn trường hợp trên thì m phải \(\in\left(0,1\right)\)

Vậy với m =0 hoặc m =1 thì \(\left|3m-1\right|< 3\)

25 tháng 1 2016

thấy chưa tôi vừa tick cho bạn do Bùi Quang Vinh

25 tháng 1 2016

Giải đi mà m.n

 

31 tháng 10 2021

a: \(P=-\left|5-x\right|+2019\le2019\forall x\)

Dấu '=' xảy ra khi x=5

31 tháng 10 2021

b) \(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^n.3^2+3^n\right)-\left(2^{n-1}.2^3+2^{n-1}.2\right)\)

\(=3^n\left(3^2+1\right)-2^{n-1}\left(2^3+2\right)=3^n.10-2^{n-1}.10\)

\(=10\left(3^n-2^{n-1}\right)⋮10\)