K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2019

\(n^3+100=n^2.\left(n+10\right)-10n^2+100\)

\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100n+100\)

\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100.\left(n+10\right)-900\)

\(=\left(n+10\right).\left(n^2-10n+100\right)-900\)

Để n3+100 chia hết cho n+10 => -900 chia hết cho n+10 => n+10 thuộc Ư(900)

Vì n lớn nhất => n+10 lớn nhất => n+10=900 => n=890

Vậy n=890

20 tháng 7 2019

Xét a là một số tự nhiên bất kỳ. Dễ thấy, nếu a chia hết cho 3 => a3 chia hết cho 9 (1)

Xét: \(a\equiv1\left(mod9\right)\Rightarrow a^3\equiv1\left(mod9\right)\)(2)

\(a\equiv2\left(mod9\right)\Rightarrow a^3\equiv8\left(mod9\right)\)(3)

\(a\equiv4\left(mod9\right)\Rightarrow a^3\equiv64\equiv1\left(mod9\right)\)(4)

\(a\equiv5\left(mod9\right)\Rightarrow a^3\equiv125\equiv8\left(mod9\right)\)(5)

\(a\equiv7\left(mod9\right)\Rightarrow a^3\equiv343\equiv1\left(mod9\right)\)(6)

\(a\equiv8\left(mod9\right)\Rightarrow a^3\equiv512\equiv8\left(mod9\right)\)(7)

Từ (1),(2),(3),(4),(5),(6),(7) => lập phương của 1 số nguyên bất kỳ khi chia cho 9 có số dư là 0,1,8

Dễ thấy: để a3+b3+c3 chia hết cho 9 => 1 trong 3 số a,b,c hoặc cả 3 số a,b,c phải chia hết cho 3 => 

=> abc chia hết cho 3. Vậy a3+b3+c3 chia hết cho 9 thì abc chia hết cho 3

26 tháng 7 2018

\(P=n^3-n^2+n-1\)

\(=n^2\left(n-1\right)+\left(n-1\right)\)

\(=\left(n-1\right)\left(n^2+1\right)\)

Đế P là số nguyên tố thì:  \(\orbr{\begin{cases}n-1=1\\n^2+1=1\end{cases}}\) \(\Leftrightarrow\)\(\orbr{\begin{cases}n=2\left(TM\right)\\n=0\left(L\right)\end{cases}}\)

Vậy n= 2

6 tháng 11 2015

ông cũng chơi bang bang ak tích tui nha

20 tháng 4 2019

bài 1:

thấy B chia 4 dư 2

=> B ko phải là scp

20 tháng 4 2019

Tại sao B chia 4 dư 2 ? 

23 tháng 8 2019

ta có n^3-n=n(n^2-1)=(n-1)n(n+1) chia hết cho 3

=> n^3-n+2 chia 3 dư 2 

mà số chính phương chia 3 dư 0 hoặc 1 suy ra vô nghiệm

1 tháng 9 2019

Ta có;                                    \(n^3-n=n^2.n-n=\left(n^2-1hay1^2\right).n=\left(n-1\right)\left(n+1\right)n\)

Vì n-1 ; n ; n+1 là ba số liên tiếp nên trong ba số chắc chắn có một thừa số chia hết cho 3.

Vậy \(\left(n^3-n\right)⋮3\)suy ra n\(^3\)-n + 2 chia cho 3 dư 2.

SCP không chia cho 3 dư 2 nên không có n sao cho số trên là SCP!