Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^5\left(\frac{1}{2}\right)^{2a}< \left(\frac{1}{32}\right)^{12}\Leftrightarrow2^5.2^{-2a}< \left(2^5\right)^{-12}\)
\(\Leftrightarrow2^{5-2a}< 2^{-60}\Rightarrow5-2a< -60\Leftrightarrow a>32,5\)
Số nguyên a nhỏ nhất thoả mãn đề bài là a=33
Ta có:\(2^5\left(\frac{1}{2}\right)^{2a}< \left(\frac{1}{32}\right)^{12}\)
\(\Leftrightarrow2^5\left(\frac{1}{4}\right)^a< 2^5\cdot\left(\frac{1}{2^{10}}\right)^{12}\)
\(\Leftrightarrow\left(\frac{1}{4}\right)^a< \left(\frac{1}{2^{10}}\right)^{12}\)
\(\Leftrightarrow\left(\frac{1}{2^{2a}}\right)< \left(\frac{1}{2^{10\cdot12}}\right)\)
\(\Leftrightarrow2a>120\)
\(\Leftrightarrow a>60\)
Mà a là số nguyên nhỏ nhất nên a=61
\(2^5\left(\frac{1}{2}\right)^{2a}=2^5.\frac{1}{2^{2a}}=\frac{2^5}{2^{2a}}=\frac{1}{2^{2a-5}};\left(\frac{1}{32}\right)^{12}=\frac{1}{32^{12}}=\frac{1}{\left(2^5\right)^{12}}=\frac{1}{2^{60}}\)
Ta cần tìm số nguyên a nhỏ nhất để \(\frac{1}{2^{2a-5}}< \frac{1}{2^{60}}\Rightarrow2^{2a-5}>2^{60}\Rightarrow2a-5>60\)
=>2a>65=>\(a>\frac{65}{2}=32,5\) mà a là số nguyên nhỏ nhất => a=33
\(\Leftrightarrow\frac{2^5}{2^{2a}}< \frac{1}{2^5}\Leftrightarrow\frac{1}{2^{2a-5}}< \frac{1}{2^5}\Leftrightarrow2^{2a-5}>2^5\)
\(2a-5>5\Leftrightarrow2a>10\Leftrightarrow a>5\)
vì a là số nguyên nhỏ nhất nên a =6
\(-\frac{17}{21}:\left(\frac{5}{4}-\frac{2}{5}\right)< x+\frac{4}{7}< 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)
\(\Leftrightarrow-\frac{17}{21}:\frac{17}{20}< x+\frac{4}{7}< \frac{12}{12}-\frac{6}{12}+\frac{4}{12}-\frac{3}{12}\)
\(\Leftrightarrow-\frac{17}{21}.\frac{20}{17}< x+\frac{4}{7}< \frac{7}{12}\)
\(\Leftrightarrow-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)
\(\Leftrightarrow-\frac{20}{21}< x< \frac{1}{84}\)
\(\Leftrightarrow-\frac{80}{84}< x< \frac{1}{84}\)
\(\Leftrightarrow-80< x< 1\Leftrightarrow x\in\left\{-79;-78;...;0\right\}\)
mà để Giá trị nguyên lớn nhất của x
\(\Rightarrow x=-1\)
Bài giải
a, \(3\frac{1}{3}\text{ : }2\frac{1}{2}-1< x< 7\frac{2}{3}\cdot\frac{3}{7}+\frac{5}{2}\)
\(\frac{10}{3}\text{ : }\frac{5}{2}-1< x< \frac{23}{3}\cdot\frac{3}{7}+\frac{5}{2}\)
\(\frac{4}{3}-1< x< \frac{23}{7}+\frac{5}{2}\)
\(\frac{1}{3}< x< \frac{81}{14}\)
\(\Rightarrow\text{ }0,\left(3\right)< x< 5,78...\)
\(\Rightarrow\text{ }x\in\left\{1\text{ ; }2\text{ ; }3\text{ ; }4\text{ ; }5\right\}\)
b, \(\frac{1}{2}-\left(\frac{1}{3}+\frac{1}{4}\right)< x< \frac{1}{48}-\left(\frac{1}{16}-\frac{1}{6}\right)\)
\(\frac{1}{2}-\frac{7}{12}< x< \frac{1}{48}+\frac{5}{48}\)
\(-\frac{1}{12}< x< \frac{1}{8}\)
\(\Rightarrow\text{ }-0,08\left(3\right)< x< 0,125\)
\(\Rightarrow\text{ }x\in\varnothing\)