Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2^m - 2^n=2^8
\(\Rightarrow\)m-n=8
Chọn các cặp (m;n)nguyên tố cùng nhau sao cho m-n=8 và m>n
tự tìm
ta có
2^m+2^n=2^m+n
2^m+n-2^m-2^n=0
2^m.2^n-2^m-2^n=0
2^m(2^n-1)-2^n=0
2^m(2^n-1)-2^n+1=1
2^m(2^n-1)-(2^n-1)=1
(2^n-1)(2^m-1)=1
ta có 1= 1.1=-1.(-1)
lập bảng và làm tiêp nhé, k cho mình nha
m+n ở số mũ nha.
m^2 + 1 \(\ge1\) với mọi m . Mà m, n là số nguyên => 2^n > 1 => n là số nguyên không âm.
+) TH1: n = 0
=> m^2 + 1 = 1 => m = 0 ( thỏa mãn )
+) TH2: n = 1
=> m^2 + 1 = 2 => m^2 = 1 <=> m = 1 hoặc m = - 1 thỏa mãn
+) TH3: n> 1
=> 2^n \(⋮\)4
Mà m^2 + 1 chia 4 dư 1
=> loại
Vậy ( m; n ) \(\in\){ ( 0; 0) ; ( 1; 1) ; (-1; 1 ) }
Sửa lại một chút ở dòng thứ 8:
Mà m^2 + 1 chia 4 dư 1 hoặc 2 ( vì m^2 chia 4 dư 0 hoặc 1 )
\(\frac{1}{m}+\frac{n}{6}=\frac{1}{2}\Leftrightarrow\frac{6}{6m}+\frac{mn}{6m}=\frac{1}{2}\Leftrightarrow\frac{6+mn}{6m}=\frac{1}{2}\)
\(\Rightarrow2\left(6+mn\right)=6m\Leftrightarrow6+mn=3m\Leftrightarrow mn-3m+6=0\)
\(\Leftrightarrow m\left(n-3\right)=-6\Leftrightarrow m=\frac{-6}{n-3}=\frac{6}{3-n}\)(*)
Để m nhận giá trị nguyên thì \(\frac{6}{3-n}\in Z\Rightarrow6⋮3-n\Rightarrow\)3-n là ước nguyên của 6 (Do n thuộc Z)
\(\Rightarrow3-n\in\left\{1;2;3;6;-1;-2;-3;-6\right\}\)
\(\Rightarrow n\in\left\{2;1;0;-3;4;5;6;9\right\}\)
Thay 3 - n vào (*) ta có giá trị tương ứng của m: \(m\in\left\{6;3;2;1;-6;-3;-2;-1\right\}\)
Vậy \(\left(m;n\right)\in\left\{\left(6;2\right);\left(3;1\right);\left(2;0\right);\left(1;-3\right);\left(-6;4\right);\left(-3;5\right);\left(-2;6\right);\left(-1;9\right)\right\}.\)
Ta có: \(2^m-2^n=2^8\)
\(2^n\left(2^{m-n}-1\right)=2^8\)
\(2^{m-n}-1=1\)
\(2^1-1=1\)
\(m-n=1\)
\(2^8\left(2^{9-8}-1\right)=2^8\)
\(\Rightarrow\)\(m=9\)
\(n=8\)
Ta có : 2m + 2n = 2m+n = 2m . 2n
=> 2m - 2m . 2n + 2n = 0
=> 2m - 2m . 2n + 2n - 1 = -1
=> (2m - 1)(2n - 1) = 1
Do m,n là số tự nhiên nên 2m - 1 và 2n - 1 là ước dương của 1
hay đồng thời xảy ra 2m - 1 = 1 và 2n - 1 = 1 => m = n = 1
Vậy m = 1 và n = 1
Nhận xét:
+) Với x \(\geq\) 0 thì | x | + x = 2x
+) Với x < 0 thì | x | + x = 0
Do đó : | x | + x luôn là số chẵn với mọi x \(\in \) Z
Áp dụng nhận xét trên thì :
| n - 2016 | + n - 2016 là số chẵn với n - 2016 \(\in \) Z
\(\implies\) 2m + 2015 là số chẵn
\(\implies\) 2m là số lẻ
\(\implies\) m = 0
Khi đó:
| n - 2016 | + n - 2016 = 2016
+) Nếu n < 2016 ta được:
- ( n - 2016 ) + n - 2016 =2016
\(\implies\) 0 = 2016
\(\implies\) vô lí
\(\implies\) loại
+) Nếu n \(\geq\) 2016 ta được :
( n - 2016 ) + n - 2016 = 2016
\(\implies\) n - 2016 + n - 2016 = 2016
\(\implies\) 2n - 2 . 2016 = 2016
\(\implies\) 2 ( n - 2016 ) = 2016
\(\implies\) n - 2016 = 2016 : 2
\(\implies\) n - 2016 = 1008
\(\implies\) n = 1008 + 2016
\(\implies\) n = 3024
\(\implies\) thỏa mãn
Vậy ( m ; n ) \(\in \) { ( 0 ; 3024 ) }
2m + 2n = 2m+n
\(\Leftrightarrow\)2m+n - 2m - 2n = 0
\(\Leftrightarrow\)2m . ( 2n - 1 ) - ( 2n - 1 ) = 1
\(\Leftrightarrow\)( 2n - 1 ) . ( 2m - 1 ) = 1
\(\Leftrightarrow\)\(\hept{\begin{cases}2^n-1=1\\2^m-1=1\end{cases}}\)
\(\Leftrightarrow\)m = n = 1
Vậy ...