Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 0,4 : x = x : 0,9
<=> x2 = 0,4 . 0,9
<=> x2 = 0,36
<=> x = 0,6 hoặc -0,6
b, \(13\frac{1}{3}\div1\frac{1}{3}=26\div\left(2x-1\right)\)
\(\Leftrightarrow\frac{40}{3}\div\frac{4}{3}=26\div\left(2x-1\right)\)
\(\Leftrightarrow10=26\div\left(2x-1\right)\)
\(\Leftrightarrow2x-1=\frac{13}{5}\)
\(\Leftrightarrow2x=\frac{18}{5}\)
\(\Leftrightarrow x=\frac{9}{5}\)
c, \(0,2\div1\frac{1}{5}=\frac{2}{3}\div\left(6x+7\right)\)
\(\Leftrightarrow\frac{1}{5}\div\frac{6}{5}=\frac{2}{3}\div\left(6x+7\right)\)
\(\Leftrightarrow\frac{1}{6}=\frac{2}{3}\div\left(6x+7\right)\)
\(\Leftrightarrow6x+7=4\)
\(\Leftrightarrow6x=-3\)
\(\Leftrightarrow x=\frac{-1}{2}\)
d, \(\frac{37-x}{x+13}=\frac{3}{7}\)
\(\Leftrightarrow7\left(37-x\right)=3\left(x+13\right)\)
\(\Leftrightarrow259-7x=3x+39\)
\(\Leftrightarrow-10x=-220\)
\(\Leftrightarrow x=22\)
a)\(0,2:1\frac{1}{5}=\frac{2}{3}:\left(6.x+7\right)\)
\(\frac{2}{3}:\left(6.x+7\right)=0,2:1\frac{1}{5}\)
\(\frac{2}{3}:\left(6.x+7\right)=0,2:\frac{6}{5}\)
\(\frac{2}{3}:\left(6.x+7\right)=\frac{1}{6}\)
\(6.x+7=\frac{2}{3}:\frac{1}{6}\)
\(6.x+7=4\)
\(6.x=4-7\)
\(6.x=-3\)
\(x=-3:6\)
\(x=-0,5\)
Vậy x=-0,5 hay \(\frac{-1}{2}\)
d)\(\frac{x}{y}=\frac{2}{3};x.y=96\)
Từ \(\frac{x}{y}=\frac{2}{3}\)suy ra \(\frac{x}{3}=\frac{y}{2}\)
Đặt k=\(\frac{x}{3}=\frac{y}{2}\)
\(\Rightarrow x=3.k;y=2.k\)
Vì \(x.y=96\)nên \(2k.3k=96\)
\(\Rightarrow6.k^2=96\)
\(\Rightarrow k^2=96:6\)
\(\Rightarrow k^2=16\)
\(\Rightarrow k=4\)hoặc\(k=-4\)
+)Với \(k=4\)thì \(x=2\);\(y=3\)
+)Với \(k=-4\)thì \(x=-2\);\(y=-3\)
Vậy \(x=2;y=3\)hoặc \(x=-2;y=-3\)
e) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và \(x.y.z=810\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k;y=3k;z=5k\)
Vì \(x.y.z=810\)nên \(2k.3k.5k=810\)
\(\Rightarrow30.k^3=810\)
\(\Rightarrow k^3=810:30\)
\(\Rightarrow k^3=27\)
\(\Rightarrow k=3\)
Với \(k=3\)thì \(x=6\); \(y=9\); \(z=15\)
Vậy \(x=6\); \(y=9\); \(z=15\)
Mk chỉ làm đc vậy thui bn à! Xin lỗi thật nhiều nha
a) Ta có:
\(\frac{4}{15}+\frac{1}{6}-\frac{4}{9}>\frac{2}{3}-x-\frac{1}{4}\\ \Rightarrow x+\frac{4}{15}+\frac{1}{6}-\frac{4}{9}>\frac{2}{3}-\frac{1}{4}\\ \Rightarrow x>\frac{2}{3}+\frac{4}{9}-\frac{1}{4}-\frac{1}{6}-\frac{4}{15}\\ \Rightarrow x>\left(\frac{6}{9}+\frac{4}{9}\right)-\left(\frac{15}{60}+\frac{10}{60}+\frac{16}{60}\right)\)
\(x>\frac{10}{9}-\frac{41}{60}\\ x>\frac{200-123}{180}\Rightarrow x>\frac{77}{180}\)
b) Bất đẳng thức kép
\(4-1\frac{1}{3}< x+\frac{1}{5}< 12\frac{2}{7}-3\frac{3}{8}\)
có nghĩa là ta phải có hai bất đẳng thức đồng thời:
\(x+\frac{1}{5}>4-1\frac{1}{3}\) và \(x+\frac{1}{5}< 12\frac{2}{7}-3\frac{3}{8}\)
Ta tìm các giá trị của x cần thỏa mãn bất đẳng thức thứ nhất:
\(x+\frac{1}{5}>4-1\frac{1}{3}\Rightarrow x>4-1\frac{1}{3}-\frac{1}{5}\\ \Rightarrow x>\frac{37}{15}\)
Từ bất đẳng thức thứ hai
\(x+\frac{1}{5}< 12\frac{2}{7}-3\frac{3}{8}\Rightarrow x< \frac{86}{7}-\frac{27}{8}-\frac{1}{5}\\ \Rightarrow x< \frac{2439}{280}.\)
Như vậy các số hữu tỉ x cần thỏa mãn:
\(\frac{37}{15}< x< \frac{2439}{280}\)