Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c)
Gọi đa thức \(ax^3+bx^2+c\) là \(f\left(x\right)\).
Theo bài ra \(f\left(x\right)⋮x+2\) , ta có phương trình:
\(f\left(-2\right)=-8a+4b+c=0\)(1)
Gọi \(Q\left(x\right)\) là thương của đa thức \(f\left(x\right)\) khi chia \(x^2-1\) được dư là \(x+5\). Ta có:
\(f\left(x\right)=ax^3+bx^2+cx=\left(x^2-1\right).Q\left(x\right)+x+5\)(*)
Nghiệm của \(x^2-1\) là \(1\) và \(-1\). Thay nghiệm x=1 và x=-1 vào (*), ta có :
\(\left\{{}\begin{matrix}a.\left(-1\right)^3+b\left(-1\right)^2+c=0.Q\left(x\right)+\left(-1\right)+5=4\\a.1^3+b.1^2+c=0.Q\left(x\right)+1+5=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-a+b+c=4\left(2\right)\\a+b+c=6\left(3\right)\end{matrix}\right.\)
Từ (1), (2) và (3), ta có HPT:
\(\left\{{}\begin{matrix}-8a+4b+c=0\\-a+b+c=4\\a+b+c=6\end{matrix}\right.\)
Giải HPT ta được:
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\\c=4\end{matrix}\right.\)
Vậy a=1;b=1 và c=4
b)
Gọi đa thức \(x^3+ax+b\) là \(f\left(x\right)\)
Gọi \(P\left(x\right)\) là thương khi chia đa thức \(f\left(x\right)\) cho \(x+1\) được dư 7.
Gọi \(Q\left(x\right)\) là thương khi chia đa thức \(f\left(x\right)\) cho \(x-3\) dư -5.
Theo bài ra ta có PT:
\(\left\{{}\begin{matrix}x^3+ax+b=\left(x+1\right).P\left(x\right)+7\\x^3+ax+b=\left(x-3\right).Q\left(x\right)+\left(-5\right)\end{matrix}\right.\)(*)
Nghiệm của x+1 là -1 và nghiệm của x-3 là 3. Thay nghiệm x=-1 và x=3 vào (*) ta được:
\(\left\{{}\begin{matrix}\left(-1\right)^3+a\left(-1\right)+b=0.P\left(x\right)+7=7\\3^3+a3+b=0.Q\left(x\right)-5=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1-a+b=-7\\27+3a+b=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-a+b=8\\3a+b=-32\end{matrix}\right.\)
Giải HPT ta được:
\(\Leftrightarrow\left\{{}\begin{matrix}a=-10\\b=-2\end{matrix}\right.\)
Vậy a=-10, b=-2
Đề bài đúng khi ta gộp hai giả thiết lại với nhau (chứ không phải tách ra như trên)
Đặt \(f\left(x\right)=x^3+ax+b\) thì ta có : \(\begin{cases}f\left(x\right)=\left(x+1\right).Q\left(x\right)+7\\f\left(x\right)=\left(x+3\right).Q'\left(x\right)+5\end{cases}\) với Q(x) và Q'(x) là các đa thức thương.
Khi đó ta có : \(\begin{cases}f\left(-1\right)=7\\f\left(-3\right)=5\end{cases}\)
Ta có hệ : \(\begin{cases}-1-a+b=7\\-27-3a+b=5\end{cases}\) \(\Leftrightarrow\begin{cases}a=-12\\b=-4\end{cases}\)
Vậy .....................................................
a) Đặt \(A\left(x\right)=x^4-9x^3+ax^2+x+b\)
Vì \(A\left(x\right)\) chia hết cho \(x^2-x-2\) nên :
\(A\left(x\right)=\left(x^2-x-2\right).Q\left(x\right)\)
\(\Leftrightarrow A\left(x\right)=\left(x-2\right)\left(x+1\right)Q\left(x\right)\) (*)
Lần lượt thay \(x=2,x=-1\) vào (*) ta có :
\(\hept{\begin{cases}2^4-9.2^3+a.2^2+2+b=0\\\left(-1\right)^4-9.\left(-1\right)^3+\left(-1\right)^2.a+\left(-1\right)+b=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4a+b=54\\a+b=-9\end{cases}\Leftrightarrow}\hept{\begin{cases}a=21\\b=-30\end{cases}}\)
b) Đặt \(B\left(x\right)=x^3+ax+b\)
Vì \(B\left(x\right):\left(x+1\right)\) dư 7 nên : \(B\left(x\right)=\left(x+1\right).H\left(x\right)+7\)
Thay \(x=-1\) vào thì ta có : \(\left(-1\right)^3+a.\left(-1\right)+b=7\Leftrightarrow b-a=8\) (1)
Vì \(B\left(x\right):\left(x-3\right)\) dư -5 nên : \(B\left(x\right)=\left(x-3\right).G\left(x\right)-5\)
Thay \(x=3\) vào thì ta có : \(3^3+3a+b=-5\Leftrightarrow3a+b=-32\) (2)
Từ (1) và (2) suy ra \(\hept{\begin{cases}a=-10\\b=-2\end{cases}}\)
c) Đặt \(C\left(x\right)=ax^3+bx^2+c\)
Vì \(C\left(x\right)⋮x+2\Rightarrow C\left(x\right)=\left(x+2\right).Y\left(x\right)\)
Với \(x=-2\) thì \(\left(-2\right)^3.a+\left(-2\right)^2.b+c=0\)
\(\Leftrightarrow-8a+4b+c=0\) (3)
Lại có : \(C\left(x\right):\left(x^2-1\right)\) thì dư \(x+5\) nên :
\(C\left(x\right)=\left(x^2-1\right).K\left(x\right)+\left(x+5\right)=\left(x-1\right)\left(x+1\right).K\left(x\right)+x+5\)
Với \(x=1\) thì ta có : \(a+b+c=1+5=6\) (4)
Với \(x=-1\) thì ta có : \(-a+b+c=-1+5=4\) (5)
Từ (3) ; (4) và (5) suy ra : \(\hept{\begin{cases}-8a+4b+c=0\\a+b+c=6\\-a+b+c=4\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=4\end{cases}}}\)
Bài 1:
Ta có:
\(2x^2+4x^3-7=4x^2(x-3)+14x(x-3)+42(x-3)+119\)
\(=(x-3)(4x^2+14x+42)+119\)
Do đó phép chia $2x^2+4x^3-7$ cho $x-3$ có thương là $4x^2+14x+42$ và dư là $119$
Bài 2:
Theo định lý Bê-du về phép chia đa thức thì phép chia đa thức $f(x)$ cho $x-a$ có dư là $f(a)$
Áp dụng vào bài toán:
\(f(2)=-23\)
\(\Leftrightarrow 2^3-4.2^2+5.2+a=-23\)
\(\Leftrightarrow 2+a=-23\Rightarrow a=-25\)
Bài 3:
Ta có:
\(x^3+ax+b=x(x^2+2x+1)-2x^2-x+ax+b\)
\(=x(x^2+2x+1)-2(x^2+2x+1)+3x+2+ax+b\)
\(=(x-2)(x+1)^2+x(a+3)+(b+2)\)
Vậy $x^3+ax+b$ khi chia $(x+1)^2$ có dư là $x(a+3)+(b+2)$
\(\Rightarrow \left\{\begin{matrix} a+3=2\\ b+2=1\end{matrix}\right.\Rightarrow a=-1; b=-1\)
Bài 4:
\(x^2+y^2-4y+5=0\)
\(\Leftrightarrow x^2+(y^2-4y+4)+1=0\)
\(\Leftrightarrow x^2+(y-2)^2+1=0\)
\(\Rightarrow x^2+(y-2)^2=-1\)
Rõ ràng vế trái luôn không âm, mà vế phải âm nên vô lý
Vậy pt vô nghiệm, không tồn tại $x,y$ thỏa mãn.
Ta có:
\(x^3+ax+b=\left(x+1\right)\cdot P\left(x\right)+7\)
\(x^3+ax+b=\left(x-3\right)\cdot Q\left(x\right)+5\)
Theo Bezut ta có:
Với \(x=-1\Rightarrow b-a-1=7\)
Với \(x=3\Rightarrow3a+b+27=5\)
\(\Rightarrow4a+28=-2\Rightarrow4a=26\Rightarrow a=\frac{13}{2}\Rightarrow b=\frac{29}{2}\)