\(2x^2+4x^3-7\) cho x - 3

2. Tìm a để

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 9 2018

Bài 1:
Ta có:

\(2x^2+4x^3-7=4x^2(x-3)+14x(x-3)+42(x-3)+119\)

\(=(x-3)(4x^2+14x+42)+119\)

Do đó phép chia $2x^2+4x^3-7$ cho $x-3$ có thương là $4x^2+14x+42$ và dư là $119$

Bài 2:

Theo định lý Bê-du về phép chia đa thức thì phép chia đa thức $f(x)$ cho $x-a$ có dư là $f(a)$

Áp dụng vào bài toán:

\(f(2)=-23\)

\(\Leftrightarrow 2^3-4.2^2+5.2+a=-23\)

\(\Leftrightarrow 2+a=-23\Rightarrow a=-25\)

AH
Akai Haruma
Giáo viên
26 tháng 9 2018

Bài 3:

Ta có:

\(x^3+ax+b=x(x^2+2x+1)-2x^2-x+ax+b\)

\(=x(x^2+2x+1)-2(x^2+2x+1)+3x+2+ax+b\)

\(=(x-2)(x+1)^2+x(a+3)+(b+2)\)

Vậy $x^3+ax+b$ khi chia $(x+1)^2$ có dư là $x(a+3)+(b+2)$

\(\Rightarrow \left\{\begin{matrix} a+3=2\\ b+2=1\end{matrix}\right.\Rightarrow a=-1; b=-1\)

Bài 4:

\(x^2+y^2-4y+5=0\)

\(\Leftrightarrow x^2+(y^2-4y+4)+1=0\)

\(\Leftrightarrow x^2+(y-2)^2+1=0\)

\(\Rightarrow x^2+(y-2)^2=-1\)

Rõ ràng vế trái luôn không âm, mà vế phải âm nên vô lý

Vậy pt vô nghiệm, không tồn tại $x,y$ thỏa mãn.

Câu 1: 

\(\Leftrightarrow2n^2-4n+5n-10+5⋮n-2\)

\(\Leftrightarrow n-2\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{3;1;7;-3\right\}\)

Câu 2: 

b: \(\dfrac{x^4-4x^2+2x-4a}{x-2}=\dfrac{x^4-2x^3+2x^3-4x^2+2x-4+4-4a}{x-2}\)

\(=x^3+2x^2+2+\dfrac{4-4a}{x-2}\)

Để dưlà -23 thì 4-4a=-23

=>4a=27

=>a=27/4

20 tháng 1 2020

Chia nhỏ ra bạn ơi!

\(a) x² +3y²+2z²-2x+12y+4z+15=0 \)

\(⇔x²-2x+1+3y²+12y+12+2z²+4z+2=0 \)

\(⇔(x²-2x+1) + 3(y²+4y+4) +2(z²+2z+1)=0 \)

\(⇔(x-1)² +3(y+2)²+2(z+1)²=0 \)

\(⇔ x-1=0 \) và \(y+2=0\) và \(z+1=0\)

Vậy: \(x=1;y=-2;z=-1\)

22 tháng 8 2017

Ta có: x2 – x – 12 = x2 – x – 16 + 4

= (x2 – 16) – (x – 4)

= (x – 4).(x + 4) – (x – 4)

= (x – 4).(x + 4 – 1)

= (x – 4).(x + 3)

5 tháng 1 2018

Ta có: x2 – x – 12 = x2 – x – 16 + 4

= (x2 – 16) – (x – 4)

= (x – 4).(x + 4) – (x – 4)

= (x – 4).(x + 4 – 1)

= (x – 4).(x + 3)

10 tháng 7 2018

a)  Dư của f(x ) chia cho  x+2 là f(-2)

Áp dụng định lý Bơ-zu ta có :

\(f\left(-2\right)=\left(-2\right)^3+3.\left(-2\right)^2+a\)

\(=-8+12+a\)

\(=4+a\)

\(\Leftrightarrow a=-4\)

Vậy để f(x) chia hết cho x+2 => a= -4

b) Dư của f(x ) chia cho x-1 là f(1)

Áp dụng định lí Bơ-zu ta có :

\(f\left(1\right)=1^2-3.1+a\)

\(=1-3+a\)

\(=-2+a\)

\(\Rightarrow a=2\)

Vậy ..............

c)  

Đặt phép chia dọc theo đa thức 1 biến đã sắp xếp

d)  Theo định lí Bơ-zu ta có :

\(f\left(x\right):x+1\)có dư là \(f\left(-1\right)\)

\(f\left(-1\right)=\left(-1\right)^3+a.\left(-1\right)+b\)

\(=-a+b-1\)

Mà theo đề bài cho dư = 7

\(\Rightarrow-a+b-1=7\) 

\(\Rightarrow-a+b=8\) (1)

Tương tự :

\(f\left(x\right):x-1\)có dư là \(f\left(1\right)\)

\(f\left(1\right)=1^3+a.1+b\)

\(=a+b+1\)

Theo đề bài cho dư 7

\(\Rightarrow a+b+1=7\)

\(\Rightarrow a+b=6\)(2)

Từ (1) và (2)              ( cộng vế với vế)

\(\Rightarrow\hept{\begin{cases}a+b=6\\-a+b=8\end{cases}}\)

\(\Rightarrow2b=14\)

\(\Rightarrow b=7\)

\(\Leftrightarrow a+7=6\)

\(\Rightarrow a=-1\)

Vậy \(f\left(x\right)=x^3-x+7\)