K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2017

Đặt K = 23 + 24 + 25 + ... + 2100

K = 4 + (23 + 24 + 25) + ......... + (297 + 298 + 299 + 2100)

<=> K = 4 + (8 + 16 + 32) + ... + (1.5845633e+29) +( 3.1691265e+29 ) + (6.338253e+29) + (1.2676506e+30)

<=>K = 4 + 56 + ... + (1.5845633e+29) +( 3.1691265e+29 ) + (6.338253e+29) + (1.2676506e+30)

<=>K = 60 + ... + (1.5845633e+29) +( 3.1691265e+29 ) + (6.338253e+29) + (1.2676506e+30)

<=> K = 60 + ... + 2.3768449e+30

<=> K = 2.3768449e+30 + ... + 60 + r 

=> r = 1.1789905e+27

=> r =  1

Đ/s:

Ps: Không chắc đâu nhé! Nhưng dù sao giúp bạn là mình vui rồi!

16 tháng 9 2017

C= 2535301200456458802993406410744

1116 là kết quả của mk 

đúng ko sai

AH
Akai Haruma
Giáo viên
17 tháng 6 2019

Lời giải:

Gọi $R(x)$ là đa thức dư khi chia $P(x)$ cho $(x-1)(x-2)(x-3)(x-4)$. Bậc của $R(x)$ phải nhỏ hơn bậc đa thức chia. Do đó đặt:

\(R(x)=ax^3+bx^2+cx+d\)

\(P(x)=Q(x)(x-1)(x-2)(x-3)(x-4)+ax^3+bx^2+cx+d\)

Trong đó $Q(x)$ là đa thức thương.

Theo định lý Bê-du về phép chia đa thức:

\(\left\{\begin{matrix} P(1)=a+b+c+d=-2019\\ P(2)=8a+4b+2c+d=-2036\\ P(3)=27a+9b+3c+d=-2013\\ P(4)=64a+16b+4c+d=-1902\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} a=8\\ b=-28\\ c=11\\ d=-2010\end{matrix}\right.\)

Vậy \(R(x)=8x^3-28x^2+11x-2010\)

b)

Từ phần a suy ra:

\(\left\{\begin{matrix} R(1)=P(1)=-2019\\ R(2)=P(2)=-2036\\ R(3)=P(3)=-2013\\ R(4)=P(4)=-1902\\ R(5)=8.5^3-28.5^2+11.5-2010=-1655\end{matrix}\right.\)

30 tháng 9 2019

n^2 chia cho:

+) 3 dư 0,1

+) 4 dư 0,1,3 (tương tự)

n^3:

+)7 dư 0,1,6

+) 5 dư 0,1,2,3,4

Bạn muốn giải chi tiết thì đặt n=3k;3k+1 chẳng hạn

28 tháng 12 2015

tick cho mik nick ta đây đi